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Abstract

This thesis presents a Simulated Annealing based algorithm to solve Two stage
capacitated facility location problem. In this problem, a single type of product must be
transported from factories to customers, passing through intermediate warehouses. Initially,
our algorithm was designed to ensures the selection of the most appropriate facilities
(factories\ warehouses). Then, we shifted our focus towards enhancing client allocations to
the best-suited facilities (customer—warehouse\warehouse—factory). Experiments show

that our algorithm obtains promising results comparing to the literature.

Key words: Location problems, Combinatorial optimization, Meta-heuristics, Simulated

annealing, Two stage capacitated facility location problem.
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Introduction

The efficient and strategic placement of facilities plays a crucial role in the success of
various industries and organizations. The Two-Stage Capacitated Facility Location Problem
is a well-known optimization challenge and it is an extend to the traditional Facility Location
Problem through incorporating capacity constraints into the decision-making process which

allows to a more realistic representation of facility operations.

In the first stage of TSCFLP, products produced by capacitated factories are transferred
to capacitated warehouses and in the second stage, the products are delivered to customers.
The problem to be addressed includes finding an optimal location for facilities to meet the
customers in order to minimize both the fixed opening cost of the factories and warehouses

and the transportation costs associated with both stages.

The objective of this thesis is to deal with TSCFLP where a single type of product must
be transported from two type of facilities to customers with the aim of proposing an efficient
algorithm to solve heuristically this problem. To the best of our knowledge and for the first
time in the literature, we propose to solve this problem using a simulated annealing

algorithm.
The thesis is organized into four chapters as follows:

In first chapter we present location problems and its application. Whereas in the second
chapter we will talk about some of the combinatorial optimization methods and algorithms
widely used to solve optimization problems. Concerning the third chapter, we will highlight
our proposed algorithm to solve TSCFLP. Then, in the fourth chapter we will present the
results obtained by our algorithm where testing it on benchmark instances from the literature.
The obtained results are compared to most of the literature. Finally, we finished with a

conclusion.

VI
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Chapter 1

1.1 Introduction

Location problems are well-known optimization problems in the literature of the
operations research. There are several variants of location problems that have been
extensively studied, starting from the capacitated and uncapacitated facility location

problems to the most constrained location problems.

In this chapter we will present a literature review on the location problems which are
related to our problem studied in this thesis. [1] [2] [3]

1.2 Location problems

In general, in the location problems the goal is to select a sub-set of facilities or locations
to be installed from a set of candidates and to allocate the other not selected ones to the
selected locations. In this section, we present the location problems related to our work. The
following variables are used in the definitions of the location problems:

[ : number of factories .

] : number of warehouses .

K : number of customers .

Ck;j : cost of shipping one unit from facility j to customer k.
Zy; + equals 1if demand customer k is assigned to facility j.
fj : opening cost of facility .

yj + lifnodejis chosen as a facility (opened) .

S; ¢

; ¢ the maximum capacity of facility j .

dy : demand of customer k.



Chapter 1

1.2. 1 Uncapacitated, single-stage location problem

This problem is also known in the literature with the name of Uncapacitated facility
location problem (UFLP). The UFLP is a basic location problem where the goal is to select
a sub-set of facilities to be installed from a set of candidates. Since we don’t have any
capacity constraint, each not selected facility will be allocated to the near selected one. The

following mathematical model presents the UFLP [1]:

v( UFLP) = min Z Z CijZij + z fiyj, (1a)

keK jej Jj€J

St Z Z = 1Vk €K, (1b)
Jjej
zj— Yy <OVkEK, jE], (10)
0<2;<1,0<y;<1VkE€EK,j€E], (1d)
yiEBVYjE], (1e)

In this model, (1a) presents the objective function where we sum the setup cost and the
allocation cost. The constraints (1b) ensure that each not selected facility is allocated to only
one selected facility. The constraints (1c) ensures that each not selected facility is allocated

to a selected facility. The constraints (1d and 1e) present the decision variables.
1.2. 2 Capacitated, single-stage problem

This problem is also known as capacitated facility location problem (CFLP). In CFLP,
we have a set of facilities candidates and a set of customers. Each customer has a demand

and each facility has a setup cost and a capacity.

The goal is to choose a sub-set of facilities from a set of candidates and to allocate each
customer to a selected facility where the sum of the demands of the customers allocated to a
selected facility must be less than or equal to the capacity of the facility. Here we present the

mathematical model which describes the CFLP [1] :
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v( CFLP ) = min z Z CijZkj +z fivi»

keK jej Jj€J
s.t. Z Zyj = 1vk € K,
jej
Z dizk; —sjy; < OVj €],
kEK

z sjyj = d(K),

JE]

z ij<1VkEK,VqEQ,

J€lq
0<2,;,<1,0<y;<1VkEK, Vj€E]J,

y; €{0,1} vj €],

1.2. 3 Multi-product location problems

In the literature when we talk about a location problem, we consider that the customers
demand on only one product (In the above presented location problems we consider that).
However, we can have some situations where the customers can demand more than one
product and here, we talk about a class of location problems called multi-product location
problems. So, each single-product location problem can be transformed to multi-product
location problem and consequently we can have a multi-product UFLP, a multi-product
CFLP, a multi-product multi-stage location problem, etc... The mathematical model which
presents the multi-product MUFLP can be founded in [1] .

1.2. 4 Multi-stage location problems

The Multi-Stage Location problems is a class of location problems describe the situations
where we have facilities on several hierarchically related levels. These cases can be found
in distribution/collect systems of companies. In this class of problems, in general the goal is
to choose a sub-set of facilities to be installed at each stage and then to allocate the selected
facilities one stage to the selected facilities of the next stage in order to minimize the total
cost including the setup costs and the allocation cost. Please note that in this class of
problems, in the first stage customers are allocated to the first stage of facilities and the
facilities of the last (the higher) stage are not allocated. In the following image we present

an example of one problem of this class:

10
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% % Stage Three

a n | Stage Two

Ll 4

Stage Zero

Figure 1: Muti-Stage Facility Location Problem

1.2. 5 Dynamic location problems

In the industry, installation of facilities is considered as strategic decisions which token on
a long-term basis. On the other hand, the basis used when taking these decisions can be
changed over time such as: demand of customers etc... The dynamic location problems are
a class of location problems which can deal with these cases (cases of “change-over-time™)
where the goal is to find high-quality solutions while considering the change-over-time. It is
worth mentioning that the dynamic location problems are harder and more complex than the
static location problems. In the literature, several dynamic location problems have been
studied such as: [4] [5] [6].

11
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1.2. 6 Probabilistic location problems

Probabilistic location problems are considered as a class of location problems which deal
with the situations where some variables/data of the problem are subject to uncertainty. In
general, the data or variables which are subject to uncertainty are modeled as a random
variable. The probabilistic location problems are harder and more complex than the
deterministic location problems. In the literature, we can find several studies which dealt

with probabilistic location problems, such as: [7] [8].
1.2. 7 Hub location problems

Hub location problems is a class of location problems where the goal is to install a set of
facilities called hubs to meet the transportation demands of the customers. In a hub location
problem, each customer demand is formulated as a transportation demand from an origin to
a destination and the quantity demanded by the customer is transported via the selected or
the installed hubs. As examples of the problems of this class we have: the uncapacitated hub
location problem, the capacitated hub location problem, etc. [9] [10] [11] [12]

1.2. 8 Routing location problems

In all classes of the location problems, we presented above, we considered the direct link
(route, arc, etc...) between a terminal or a client to a selected facility or depot in the allocation
part. For example, if we have 3 clients allocated to a facility, then we consider that the client
1 is directly linked with facility, the second client is also directly linked to facility and the
same case for the third client. However, in the location routing problems, all clients allocated
to a facility are not directly linked to the facility, but they are linked with a route that starts
from the facility and ends at this facility. So, in a location routing problem we have two sub-
problems: (1) The location of the facilities and the allocation of clients to these facilities and
(2) create a set of routes to visit the clients allocated to each facility. More details on location-

routing problems and their applications are found in [13] [14] [15] .

12
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1.2. 9 Multi-objective location problems

The multi-objective location problems are a class of location problems where the
objective is to optimize more than one criterion. In the formulation of these problems, we
find that the objective function contains more than one criterion such as: the construction
cost (including installation and affectation cost), the profit (to be maximized), the waiting
time (as a service quality), etc... In the literature, we can find several multi-objective location
problems which have been studied [16] [17] [18].

1.3 Two-Stage Capacitated Facility Location problems

The Two-Stage Capacitated Facility Location Problems (TSCFLPs) are considered as
multi-level location problems where a capacity constraint is imposed. In TSCFLPs, we have
a set of facilities candidates in level 1 (in general we call them warehouses) and another set
of facilities candidates in level 2 (in general we call them factories) [19] . The goal is to select
a sub-set of factories to be installed from the set of candidates, and another sub-set of
warehouses to be installed from the set of candidates to meet the demands of the clients
while minimizing the total cost, including the installation cost and the allocation cost. The
allocation is made as: the clients are allocated to the selected warehouses and the selected
warehouses are allocated to the selected factories. In addition, the sum of the demands of
clients treated by a selected warehouse must be inferior or equals to its capacity, and the
same case for each selected factory, the sum of the demands of the warehouses must be
inferior or equals to its capacity. In the literature, there are many TSCFLPs that have been
solved such: single-source TSCFLP [20], multiple-source TSCFLP [21], multi-product
TSCFLP [22]. etc... It is worth mentioning that in our thesis we deal with the multiple-
source TSCFLP. In the following image we present as example of the TSCFLP:

13
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:Ii :Ii .:h: Factories

ﬁ @ ﬁ ﬁ Warehouses

Figure 2 : Two Stage Capacitated Facility Location Problem

1.4 Applications

The location problems have a plenty of applications, notably in modelling industrial and

real-life problems. Here we present examples of these applications [23] [24]

Cluster analysis: In general, in the cluster analysis, the goal is to group a set of items (or
any other entity) into clusters (or groups) where the items belong to one cluster should be
homogeneous. In fact, we can solve cluster analysis problems as location problems where
the goal is to find the best items that will be the kernel of each group and by the allocation
of the rest of the items to these best items, we get a set of groups or clusters. As an example,

from the literature, in [25] the authors modelled a clustering task as a p-median problem.

Location of bank accounts: Another important application of the location problems can
be found in [26]. In this study, the authors assumed that: when a company pays its suppliers,
we can optimize float when choosing the location of the bank accounts used to pay them.
This problem has been modelled as an UFLP with some additional constraint(s). Another

application of the location problems in the financial sector can be found in [27].

14
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Vendor selection: Selecting the most appropriate vendors is an important task for any
company. In fact, the selection process takes in consideration several criteria such as: price,
quality, know-how, product-to-buy etc... In [28], the authors discussed that the vendor
selection problem can be modeled and solved using location problems such as UFLP and
CFLP.

Location and sizing of offshore platforms for oil exploration: In [29] [30] the authors

modeled and solved a problem in oil exploitation as a location problem.

Database location in computer networks: In [31]the authors modeled the problem of
the installation and the maintenance of databases in a computer network an extended variant
of UFLP.

Computer networks and concentrator location: In the literature, location problems
are used to solve several complex problems in the design of the telecommunication and
computer networks [32] and [33] In addition, many of these complex problems are related

to the location of the concentrators [34] and [35]

Index selection for database design: In [36] the authors dealt with an important problem
in the physical database design which is the index selection problem. This problem has been

modeled and solved as an UFLP.

1.5 Conclusion

In this chapter, at first, we have presented several location problems related to the Two-
Stage Capacitated Facility Location Problem. Secondly, we have provided a description of

TSCFLPs. Finally, we have presented the real-life applications of TSCFLP.

15
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11.1 Introduction

In this chapter we will present some methods and algorithms wish are used in
combinatorial optimization problems solver. The combinatorial optimization methods can

be divided in two main sub class: exact methods and Approximation methods.

In general, Exact methods aim to find the globally optimal solution for combinatorial
optimization problems. On the other hand, the Approximation methods and algorithms aim
to find near-optimal or optimal solutions within a reasonable amount of time, as finding

optimal solution for large-scale problems is often computationally infeasible.
1.2 Combinatorial optimization problem

Combinatorial optimization covers all methods that allow determine the optimum of a
function with or without constraints. In theory, a combinatorial optimization problem is
defined by a set of instances. Each instance of the problem is associated with a discrete set
of solutions S, a sub-set X of S representing the feasible solutions and a cost function f
which assigns to each solution s € X a cost f(s). Solving such a problem consists of finding
a solution s, € X optimizing the value of the cost function f. s, is called an optimal

solution or global optimum [37] .
11.3 Exact Methods

Exact methods are methods that search for the optimal solution of a problem by
exhaustively examine all possible solutions in the search space. However, the major
drawback of these methods is the execution time, because all possible solutions will be
examined one by one and the execution time increases exponentially with the size of the
problem solved. Therefore, these techniques remain inappropriate for large sizes instances

[37]. As an example of these methods, we can cite: the branch and bound.
11.3.1 Branch and bound

The Branch and bound algorithm (B&B) [38] is appeared for the first time in the 60s and
used to solve linear economic programming problems. Later, B&B becomes the most widely

used exact method for solving NP-hard optimization problems [39]. Formally, B&B is a
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tree-structure based algorithm where its main goal is to examine all possible solutions while
eliminating unnecessary or not-beneficial branches. Unnecessary or not-beneficial branches
are branches that contain infeasible solutions or bad quality solutions. The branch and bound
algorithm consider x;, as an optimal solution if and only if the value of the objective function
xp, 1s less than or equal to the upper bound v, and is greater than or equal to lower bound v;

, mathematically: v; < f(x) < vs.

As we highlighted above, the B&B explores all possible solutions while eliminating not-
beneficial branches. Therefore, in order to develop a high-quality B&B method you have to
focus on the following techniques used in B&B:

e The separation technique: how to divide the search space into subsets of solutions
awhile ensuring that the union of the created subsets covers all possible solutions
of the problem.

e The evaluation technique: used to determine whether there are possible solutions
of good quality in the tree-branch or not by calculating the lower and upper bounds
associated to the current branch.

e The exploration technique: which consists of fixing the strategy of exploration of
the tree by giving the order of visit to its branches. There are several exploration

strategies such as: better first, depth first etc.

Algorithm 1 : Branch and Bound for minimization

1. Typor « Create the root of the search tree according to the separation technique ;

2 Ubound « +o; L« Troot;
4:  while (L£9)
S: Sc « Explorer(L);
6: If (Evaluation (S¢) < Upouna)
T L' « All partial solutions S’ that can be obtained from Sc;
8 For (each S'in L' do)
9: If (S' is a complete solution)
10: ‘ update Uy,yng; update Speqt;
12: Else
13: ‘ addS toL;
14: End
15: End
16: Else
17: ‘ delate S from L;
18: End
19: End

20: Return Sj.¢;

18



Chapter 2
1.4 Approximation Methods

Optimization problems in the industrial world have usually large size and many
constraints, and therefore, exact methods cannot be applied for most of these cases. So, we
have to look for a good solution in a reasonable time instead of waiting for an optimal
solution after years of computation [37]. In contrast to the exact algorithms, Approximation
methods do not guarantee the optimality of the solution, but they allow to find good quality
solutions in a reduced execution time, it means, they seek a good compromise between the
quality of the solution and the calculation time. In the literature, many Approximation
methods have been proposed. In the following we present 3 categories of the approximation
methods: heuristics, meta-heuristics and hybrid methods.

11.4. 1 Heuristic

In the literature, there are several definitions of a heuristic. here we present that of [40]:
"A heuristic (heuristic rule, heuristic method) is a rule of thumb, strategy, trick,
simplification, or any other kind of device which drastically limits search for solutions in
large problem spaces. Heuristics do not guarantee optimal solutions; in fact, they do not
guarantee any solution at all; all that can be said for a useful heuristic is that it offers

solutions which are good enough most of the time. **

Moreover, in the field of combinatorial optimization, we can say that a heuristic is an
Approximation method developed to solve a particular problem and it requires a deep
knowledge about the problem being addressed. The goal of a heuristic is to find solutions
not necessarily optimal for a given problem in a very short execution time [37].

11.4.1.1 Greedy constructive algorithm

A Greedy constructive algorithm [41] is an algorithm that progressively build a solution
from scratch. At each step the locally optimal element according to the evaluation function
is selected and added to the solution under construction until obtaining a complete feasible
solution. The evaluation function also known as the greedy criterion or greedy choice rule,
typically it measures the incremental increase or decrease in the objective function or cost

function when incorporating a specific element into the partial solution.
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Algorithm 2 : Greedy algorithm for minimization

S « 0;
C<{enen. .... ,en b
Evaluate the incremental cost c(e) for all e € C;
While (C # Q)
ep < select e € C with the smallest incremental cost c(e) ;
S« Su {eb};
C e« C—{ep}
Reevaluate the incremental cost c(e) foralle € C;
End
Return §S;

-

11.4.1.2 Randomization and Greedy Randomized algorithm

Randomization plays a very important role in algorithm design [41]. It is used to introduce
randomness and diversity into the search process, allowing the algorithm to explore different
regions of the solution space and avoid being trapped in local optimal. One particularly

important use of randomization appears in the context of greedy algorithms.

A Greedy randomized constructive algorithm [41] uses the same principle of a greedy
algorithm that we mentioned before but it builds a restricted list of locally optimal element
and randomly select an element from the predefined list unsated of selecting the locally
optimal element. In general, the greedy randomized algorithms are used in the construction

phase of GRASP or to create initial solutions for GA.

Algorithm 3: Greedy randomized algorithm for minimization

1. S«0
2: Ce<{ejep . unnnn.. ,en b
3: Evaluate the incremental cost c(e) for all e € C;
4: While (C # Q)
5: Build a list with the candidate elements having the smallest incremental costs;
6: ep < Select random e € the restricted candidate list ;
7. S« Su { eb};
8: Ce«C—{ep}
9: Reevaluate the incremental cost c(e) foralle € C;
10: End
11: ReturnS;
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11.4.1.3 Local Search algorithm

A Local search algorithm (LS) is iteratively improving a solution, it replacing the current
solution with a better solution in the neighborhood until there is no better solution is founded.
The neighborhood of a solution consists of the solutions that can be obtained by making
small modifications or changes to the current solution. The efficiency of LS depends on

several aspects, such as the initial solution & the neighborhood structure.

Algorithm 4: Local Search

1. S « start solution;
2:  While (S is not a local optimal)
3 S, < selectS € N(S);
4 If (f (S,,) is better than f (S))
5 |'S « Sy
6 End
7: End
8: ReturnS;

11.4. 2 Meta-Heuristic

In the literature and according to [42] “A metaheuristic is formally defined as an iterative
generation process which guides a subordinate heuristic by combining intelligently different
concepts for exploring and exploiting the search space, learning strategies are used to
structure information in order to find efficiently near-optimal solutions. ”. Another definition
can be found in [43]:

“A metaheuristic is an iterative master process that guides and modifies the operations
of subordinate heuristics to efficiently produce high-quality solutions. It may manipulate a
complete (or incomplete) single solution or a collection of solutions at each iteration. The
subordinate heuristics may be high (or low) level procedures, or a simple local search, or

just a constructive method.” [43]

In general, a heuristic is an algorithm developed to solve a specific problem. However, a
metaheuristic is a general strategy that can be applied to solve a large number of optimization
problems. In the literature, several metaheuristics have been developed which can be

subdivided into two main families: single-solution based metaheuristics (based on a single
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solution) and population-based metaheuristics (based on a population of solutions). These

two families are described below.
11.4.2.1 Single-solution based metaheuristics

Single-solution based metaheuristics are single solution algorithms that are generally
based on the exploration of the neighborhood of the current solution. They start from an
initial solution, then at each iteration then they try to improve the current solution by
exploiting its neighborhood. Many single-solution based metaheuristics methods have been
proposed in the literature, here we cite the most known: simulated annealing, taboo search,

variable neighborhood search, GRASP, etc.
11.4.2.1.1 Simulated Annealing

Simulated Annealing (SA) was first proposed by Kirkpatrick [44] , inspired from the
physical process of annealing in metallurgy. The annealing process is to modify the
properties of metal by heat it to a specific temperature and then slowly cool it in a regular
way to ensure that the atoms reorganize themselves in a regular way. this process helps to

reduce metal defects when it is transformed from a liquid to a solid state.

SA algorithm attempts to simulate the annealing process described above to find a good
quality solution for a given optimization problem. Starting with very high temperature and
an initial solution. During the annealing process and iteratively, the temperature decreased
and a close neighbor of the current solution is randomly selected and accepted if it is better
than the current solution, otherwise It will be accepted with a probability proportional to the
temperature: the lower the temperature, the lower the probability of the solution being
accepted. Over time, the algorithm accepts much better solutions and converges to good

quality solutions.
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Algorithm 5: Simulated annealing

1: S « initial solution;
2: T <« initial temperature;
3: while (the stop criterion is not met) do

4: randomly choose S,, € N(S)
5: r « a random number between 0 and 1.
6: calculate A;
7: If (S, is better than S Or r < e~(/T))
8: S— Su;
9: if (S is better than S})

10; | Spest < S;

11: End

12: End

13: update T;

14: End

15:  returnSpest;

11.4.2.1.2 Tabu Search

Tabu search (TS) introduced by Glover in the 1986 [45]. Technically, TS is a form of
local search with additional rules and a tabu list to keep track of previously visited solutions
and prevent the algorithm from revisiting them in the near future. The tabu list acts as a
memory mechanism that helps the algorithm to escape the local optima’s and to explore
different regions of the search space. There are various types of memory mechanisms

employed in TS such as: short, medium and long memories.

Formally, TS algorithm starts with an initial solution S. For each iteration, the
neighborhood N(s) of the current solution is generated and the best solution S,, in it which
does not appear in the tabu list L is selected. Afterwards, the tabu list is updated by adding
the selected solution to it and remove the oldest solution in it (FIFO method). After that, the
selected solution becomes the current solution. The best overall solution S, is kept as the

result and the algorithm ends when the stop criterion is satisfied.
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Algorithm 6 : Tabu Search

1: S « initial solution;

2: while the stop criterion is not met do

3 Generate N(s);

4: find the best solution S, ,{S,, € N(s)and S,, & L};
5: Update L;
6.

7

8

S« Sy
If (S is better than S;) Then
: ‘ Sbest < S
9: End
10: End

11: Return Sjeq;

11.4.2.1.3 Greedy Randomized Adaptive Search Procedures

Greedy randomized adaptive search procedure (GRASP) was first introduced in 1989
[46] as multi-start metaheuristic approach that combines both of greedy randomized
algorithm and local search algorithm. At each iteration, the greedy randomized algorithm is
used to construct a solution. Once the solution is obtained, a repair procedure might be called
to fix the solution if it is not feasible or create a new solution that reach feasibility. After
that, the local search algorithm is applied on the created feasible solution. The best overall

solution is kept as the result of the algorithm.

Algorithm 7 :Greedy Randomized Adaptive Search Procedures for Minimization

1: f; & oo;
2:  While (the stop criterion is not met)
3: S « Greedy Randomized Algorithm ();
4: if (Sisnot feasible)
5: ‘ S « RepairSolution(S) ;
6: End
7. S « LocalSearch(S) ;
8: I (f(S)<f)
9 Spest < S ;
10: fi e £(S);
11: End
12: End

13: return Spes;
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11.4.2.1.4 Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic introduced by Miadenovi¢ &
Hansen in1997 [47] .The basic idea of VNS is the systematic change of a neighborhood
combined with solution perturbation and local search procedures. During algorithm running,
the neighborhood of a solution is explored using a set of predefined neighborhood structures.
VNS has undergone various modifications and enhancements. A discussion of the basic

concepts and successful applications of VNS can be found in survey papers [48].

Algorithm 8: Variable Neighborhood Search

1. S « initial solution;
2: N(L),L=12....... Lmax ;
3:  While the stop criterion is not met do
4: L« 1;
5: While (L < Lyax)
6: Sy < Shaking(S,N) ;
7: S, « LocalSearch(S,);
8: if (£(S,) < F(Sp))
9: S8,

10: L« 1;

11: Sbest < S;

12: End

13: ‘ L<L+1;

14: End

15: End

16: End

17: Return Spest ;

11.4.2.2 Population-based metaheuristics

Population-based metaheuristics are methods based on a population of solutions and
which are in general inspired by nature [49]. These methods use a set of solutions called
population. They start with an initial population and, at each iteration, they try to build a new
and better population based on the previous one in order to converge to good solution(s). As
examples of these methods, we can cite: genetic algorithms, particle swarm optimization,

ant colony algorithm, etc.
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11.4.2.2.1 Genetic algorithm

Genetic algorithm (GA) was introduced in the 1975’s by Holland [50]; it is inspired from
the biological evolution of living beings based on the principles of natural selection and
genetics. The basic genetic algorithm generally consists of two processes, the first is the
selection of the individual to produce the next generation, and the second is the manipulation
of the selected individual to produce the next generation through the crossing and the

mutation techniques [51].

GA starts with the creation of an initial population of solutions. Then, at each iteration,
the algorithm creates a set of solutions called parents by making a copy of the selected
solutions from the population. A solution that belongs to the population can be selected zero,
one or more than one time. After the selection process, the crossover is applied on the parents
to generate a new set of solutions called children. Then, the algorithm applies the mutation
on the children. At the end of the current iteration, the algorithm chooses a set of solutions

from the population and the children to build the next population of the next iteration.

Algorithm 9 : Genetic algorithm

1: P « Create an initial population ();
2:  While (the stopping criterion is met)
3 P, « Selection(P);
4: E « Crossover(PR,);
S E < Mutation(E);
6 P « Replacement (E, P);

7: End

8: Return the best solution found;

11.4.2.2.1.1 Selection

Selection is the operator that allows you to choose good solutions from the population to
create the set of parents that will produce the children. There are many selection methods in

the literature, such as:

» Uniform selection method: select randomly one solution and the finesses of the
solutions are considered. Therefore, all solutions have the same probability of
being selected.

» Roulette selection method: consists of randomly selecting a solution where the
probability of choosing a solution is proportional to the fitness of that solution.

» Rank selection method: each solution is chosen randomly where the probability
of selection a solution is proportional to its rank in the population. Each solution
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ranked according to his fitness where the worst solution has rank=1 and best
solution take the highest rank.

» tournament selection method: create a group of solutions from the population
randomly. Then the best solution of the group is selected.

11.4.2.2.1.2 Crossover

The crossover is the operator that allows to build one or two children (new solutions)

from two parent solutions by recombination the parental genes (genes mean parts of the

solution). The crossover is applied to each pair of parents selected with a probability that

usually between 65% and 90%. There are several crossover methods such as:

» Single point crossover method: it is the most popular crossover method where a
random point is chosen and we cut each parent on two parts.

One Cut Point One Cut Point1
[1Jofof1fofa]1] [1JoJ1Jof1]1]0]
Parent One Parent Two

1o [o [ofaTaTo] o] 1 [of1]1]

Child One Child Two

Figure 3 : Single point crossover in GA

» Two-point crossover method: This method cuts both parents into three parts by
two cutting points. The two cutting points are chosen randomly.

Two Cut Poin Two Cut Poin

1 ]o]oj1]of1]1]

Parent One Parent Two

(1] ofo [oii]1] (RO 1 [o[1[1]

Child One Child Two

Figure 4: Two-point crossover in GA

» uniform crossover method: This method consists of going through both parents’
gene by gene and each time one of the two genes is selected. The child solution is
built by the selected genes.
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oMo I 1 oW « o0 11 [N

Parent One Parent Two

|1 [l o [0 o [+ o

Child One Child Two

Figure 5 : uniform crossover in GA

11.4.2.2.1.3 Mutation

After selection and crossover, we get new population of solutions. Some are directly
copied, and others are produced by crossover. Furthermore, Mutation involves making a
small random change to the solution. For example, altering one or two genes in the
solution. The purpose of the mutation is to ensure a good exploration of research space. The

mutation is applied with a probability between 1% and 5%.
11.4.2.2.1.4 replacement

There are several methods that can be used to select the new population of solutions of

the next generation. In the following present three methods:

» Completely remove the old population and replace it with the children.

» Merge the two sets the old population and the children and use one of the
selection methods (used in the selection phase) to select the solutions.

» Merge the two sets the old population and the children and choose the best

solutions (elitist method).
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11.4.2.2.2 Particle Swarm Optimization

Particle swarm optimization (PSO) was proposed in 1995 by Kennedy and Eberhart [52].
It is inspired from the swarms of birds that move in groups where every bird can profit from

the experience of all other members.

In PSO, a group of particles moves through the search space, representing potential
solutions. Each particle adjusts its position based on its own experience and the experiences
of neighboring particles. The position and movement of particles are guided by two main
factors: the personal best (the best solution found by the particle itself) and the global best

(the best solution found by any particle in the swarm).

Algorithm 10 : Particle Swarm Optimization

1 randomly initialized position Xi and velocity Vi of particles ;
2:  While (the stopping criterion is met)
3 For (each particle)

4: evaluate the fitness function;
o update: Viand Xi ;
6: update: p_best and g_best;
7 End

8. End

9. Return the best solution found;

11.4.2.2.3 Ant Colony Optimization

Ant Colony Optimization (ACO) was first introduced by Dorigo in the 90s [53]. It was
inspired from the behaviors of real ants, which leaving pheromone trails to find their ways
back to the nest or to find food. The pheromone trails serve as a form of communication

between the ants, allowing them to indirectly exchange information.

In general, ACO is based on the indirect communication of a colony of simple agents,
called artificial ants, mediated by artificial pheromone trails. The pheromone trails in ACO
serve as a distributed, numerical information which the ants use to probabilistically construct
solutions to the problem and which the ants adapt during the algorithm’s execution to reflect

their search experience.
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Algorithm 11 : Ant Colony Optimization

1: randomly initialized pheromone values; ;
2:  While (the stopping criterion is met)

3: For (each Ant)

4. construct a solution;

S: update local pheromone values;

6: End

7: End

8:

Return the best solution found so far ;

11.4. 3 Hybridization

Hybridization is one of the recent approaches in the field of optimization. In the hope of
obtaining better results, many independent optimization algorithms have been combined.
Considering the good results that hybridization has obtained, it has become a widely used
strategy to solve optimization problems. The huge number of efficient hybrid metaheuristics
proves that hybrid metaheuristics represent actually the most efficient algorithms for many
classical and real-life difficult problems [54]. In this section we are going to present some
hybridization method such as: Coupling metaheuristics with exact methods and Coupling

metaheuristics with other metaheuristics
11.4.3.1.1 Coupling metaheuristics with exact methods

Initially, the primary focus of hybridization was on the collaboration between different
metaheuristics [55]. This approach was perceived as the most direct and obvious way to
combine metaheuristic techniques, leading to the neglect of other potential methods for
hybridization. However, when researchers start to explore alternative hybridization
approaches, they realized the complementarity between specific exact methods and
metaheuristics. In fact, exact methods are known for their capability to solve small instances
of the problems and asses their optimality but they are not used to solve large NP-hard

problems because they are computationally expensive.

By coupling metaheuristics with exact methods, researchers aimed to leverage the
strengths of both approaches. This hybridization allows for the efficient exploration of
solution spaces using metaheuristics, while exact methods are employed to refine and

improve the solutions obtained. The exact methods can be used to verify the quality of
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solutions found by the metaheuristics, potentially reaching optimality for smaller instances

within a reasonable time frame.

In [56], the authors presented different state-of-the-art approaches of combining exact
algorithms and metaheuristics to solve combinatorial optimization problems and they
classed these hybrids in two main categories:

- The first category was called ‘collaborative combinations', where the algorithms
exchange information but are not part of each other. This category was divided into two sub-

categories: Sequential Execution, Parallel and Interleaved Execution.

- The second category was called "Integrative Combinations"; where one technique is an
integrated component of another technique. It was also subdivided in two subcategories:
Incorporating exact algorithms in metaheuristics and Incorporating metaheuristics in exact

algorithms.
11.4.3.1.2 Coupling metaheuristics with other metaheuristics

The combination of different metaheuristics is the most common type of hybridization
found in the literature [55]. Coupling metaheuristics is a technique used to combine multiple
metaheuristics to improve their overall performance in solving optimization problems. There
are several ways to couple metaheuristics with other metaheuristics. Here are a few

commonly used approaches [57] [58] [59]:
11.4.3.1.2.1 Parallel hybrids

Parallel hybrids contained multiple metaheuristics that executed simultaneously or in
parallel. Each metaheuristic operates independently, exploring the search space and
generating solutions concurrently. The solutions generated by the individual metaheuristics
are then combined or compared to determine the best solution. parallelization is mainly used
for the following reasons: speed-up the search, improve the quality of the obtained solutions
and improve the robustness and to solve large scale problems [57].

According to the authors in [58], the parallelization techniques of a "standard"

metaheuristic vary depending on whether it is a trajectory-based (single solution) or a
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population-based metaheuristic. For trajectory-based metaheuristics, three types of
parallelization are often found in the literature:

Parallel moves model: A master-slave approach is conducted here. Where, at the
beginning of each iteration, the master duplicates the current solution between distributed
nodes. Each solution separately manages their own solution/candidate and the results are
then returned to the master. This technique of parallelization does not alter the behavior of

the metaheuristic. A relatively recent example of this hybridization can be found in [59].

Parallel multi-start model: This approach of parallelization involves simultaneously
launching several trajectory-based methods for computing better and robust solutions. They
may be homogeneous or heterogeneous, cooperative or independent, start from the same or
different solution(s), and configured with the same or different parameters. An example of

this category is in [60]

Move acceleration model: Techniques that fit in this category evaluate the quality of
each move in a parallel centralized way. This model becomes attractive when the evaluation
function can be parallelized as its computationally expensive. In that case, the function can
be regarded as an aggregation of a certain number of partial functions that can be run in

parallel. The interested readers are referred to the work of [61].
11.4.3.1.2.2 Sequential hybrids

With regards to the hybridization purpose, non-parallel hybrid algorithms can loosely be
divided into two categories [62]

Collaborative Hybrids: Under this category of hybrid algorithms, multiple algorithms
work together to solve the same problem directly, with each algorithm being utilized in
different search stages. In the simplest case, the contribution weight of each participating
algorithm can be considered equal. An example on collaborative Hybrids can be found in
[63].

Integrative Hybrids: In this type of hybridization, one primary algorithm is utilized to
solve the problem, while another algorithm is applied to optimize the parameters for the
primary algorithm. In this aspect, one algorithm is regarded as a subordinate, embedded in a
master metaheuristic. For this category, the contributing weight of the secondary algorithm
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is Approximatively 10 to 20% [55]. This involves the incorporation of a manipulating
operator from a secondary algorithm into a primary algorithm. For example, many
algorithms utilized the mutation operator from GA into PSO, resulted in so called Genetic
PSO or Mutated PSO.

11.5 Conclusion

In this chapter, we have presented several combinatorial optimization methods and
algorithms. We began by presenting the exact methods, within this category, we highlighted
branch and bound. Next, we explored heuristic methods such as Greedy algorithms, Greedy
Randomized algorithm and Local Search algorithm. Furthermore, we delved into
metaheuristic methods, which are general-purpose optimization algorithms applicable to a
wide range of combinatorial problems. As metaheuristics, we presented the most popular
and the widely used ones in the literature: SA, TS, VNS, GRSP, GA, PSO and ACO. Finally,
we discussed the concept of hybridization, which consists of combining different

optimization methods.

In the following chapter, we will present the proposed algorithm used to solve TSCFLP.
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111.1 Introduction

In this chapter we will present an algorithm to solve Two stage capacitated facility
location problem with single commodity and multi-source. The algorithm that we propose
is a Simulated Annealing based method which starts from a randomly generated solution and
tries to improve it in order to get a high-quality solution within a reasonable running time.
In what follows, in section 2, we present the mathematical definition of the TSCFLP as
shown in [64]. Then, we give a short review on the most related works which dealt with the
TSCFLP. After that, we present our proposed algorithm, and we finish with a conclusion.

I11.2 Problem definition

The set of all customers is represented by K , where each customer k € K has ademand
qi to be met. J represents the warehouses; for each warehouse j € J, we have: a capacity
p; , an opening cost g; and the shipping product cost d;; to all customers k € K. Similarly,
to the warehouses, I represents the factories; each factory i € I has: a capacity b; , an

opening cost f; and a shipping product cost ¢;; of to all warehouses j € J.

To meet demands of all customers, TSCFL can be defined as determining a subset of
open warehouses W < J and open factories F < I while the sum of total opening and total

shipping costs is minimal.

In order to represent the TSCFL as Mixed Integer Programming (MIP) problem, the
decisions to be made at each step have to be defined in term of decision variables. Given

that, we define z;.j € J and y;.i €I as decision variables that indicate whether the
warehouse j and factory i will be opened or not. In addition, the decision variables x;;.i €
I, j € J refer to how much flow is being sent from the factory i to the warehouse j and

sjk-J €],k € Kindicates to how much flow is being sent the warehouse j to the customer

k.

The Mixed Integer Programming used for this TSCFL is the same presented in [64]
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The objective function (A) represents the total cost of the shipping system. Constraints
(B) ensure that each customer is served. Constraints (C) are conservation constraints, i.e. the
total amount of products shipped from a warehouse must be at most the total shipping to it
from the factories. Constraints (D) and (E) are capacity constraints assigned to factories and
warehouses, respectively. Finally, constraints (F) and (G) are assigned to flow variables, and

constraints (H) and (I) impose binary values for the respective variables.

111.3 Most related work

In this section, we present the most related works proposed to solve TSCFLP. In this
thesis, we consider the TSCFLP with multiple-source and single-commodity and to the best
of our knowledge there are six papers that have been published and dealt with this variant.

In the following, we give a short review of some works:

In 2014 Fernandes [64] proposed a set of instances with different characteristics and
presented a simple and effective Genetic Algorithm to solve the TSCFLP. Computational
results are reported comparing the heuristic results with those obtained by two state-of-the-

art Lagrangian heuristics proposed in the literature for the problem

In 2016 Louzada [65] came up with a hybrid method that combined a clustering search

(CS) method to define the factories and warehouses to be installed with an exact method to
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define the flow of products between factories, warehouses and customers. This work was

able to find better solutions compared to the GA of [64]in lower computational times.

In 2019 Gonzalez [66] presented hybrid method based on the Greedy Randomized
Adaptive Search Procedure (GRASP) with a Local Branching procedure. This method was

able to obtained relevant results.

Recently in 2021 Gonzélez [19], the authors developed a hybridization of Clustering
Search (CS) and Adaptive Large Neighborhood Search (ALNS) metaheuristics with the
Local Branching (LB) technique for the TSCFLP. This hybridization has found high quality

solutions in low computational time.

All the mentioned work above used, in the experiments and in the comparison, the same

instances proposed in [64]
111.4 Proposed Algorithm

In this section, we present our algorithm for solving the TSCFL problem, which attempts
to find solution of good quality in a reasonable time. The algorithm considers that the two
levels are independent of each other and at each level there is potential facilities to be opened
to satisfy the total demand of customers. In addition, the algorithm treats the level 1 and then
deals with the level 2; where in level 1, the warehouses are considered as the facilities (to be

opened) and in level 2 the opened warehouses are considered as customers.

First, the algorithm generates randomly an initial solution S, which becomes the current
solution. Then, at each iteration, the algorithm creates a neighbor solution S,, of the current
one S ; If S, is better than S according to the objective function, then the algorithm will
replace S with S,, and update the best solution Sg if it is better the than Sg; otherwise, S,
will be accepted with a probability equal to e~/T). At the end of each iteration, the current
temperature T is updated. The algorithm stops when the stopping-criterion is met. In the
following sub-sections, we highlight the details of each part of the algorithm: (1) the initial
solution procedure, (2) the neighborhood creation procedure, (3) the acceptance criterion

method and we finish with (4) the annealing method.
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Remark: In the most of parts of our algorithm, we treat the level 1 of the problem exactly
as the level 2, that means the same techniques and methods used for level 1 are used for level
2. Therefore, and to avoid repetition, the term clients is used to refer to the customers in the
level 1 and the opened warehouses in level 2 and we use the term facilities to refer to the

warehouses in level 1 and the factories in the level 2.

Algorithm 12 : Simulated Annealing for TSCFLP

1: T « initial _Temperature;
2: Sy « Initial Solution Procedure ();
3: while (the stop criterion is not met) do
4: S, < neighbor _Solution (S,);
5: r « arandom number between 0 and 1;
6. A< f(Sn) = f(So)
7: If (£(S,) < f(Sp) or r < e~@/T))
8: So < Su;
9. 1T (f(Sn) <f(Sp))
10: | Sy« S;
11: End if
12: End if
13: update T;
14: End
15 Return Sp;

111.4. 1 Initial Solution Procedure

The Initial Solution Procedure generates the initial solution in a random fashion. it
randomly selects warehouses and factories to be opened until the total capacity of the opened

warehouses and factories is able to satisfy all demands of customers.

Once we obtain the lists of warehouses and factories, we apply the allocation procedure
“Allocation Procedure 1” described below. This procedure is highlighted in Algorithm 13,
the union Sj, "Initial Solution of level 1" and Si, "Initial Solution of level 2" give us the

final Initial Solution.
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Algorithm 13 : Initial Solution Procedure

1. Customers « {ki,ky,....... ik}
2: Warehouses < {ji,jz, e wevi jiy1}
3. Factories « {i1, i3, .-.. Jn ks
4: Sk, < Customers;Sjo < @; Sip < O;
5: while (the stop criterion is not met) do
6: J < selectrandom j € Warehouses and j & Sj,;
I Sjo < Sjo U {jr};
8: End
9: while (the stop criterion is not met) do
10: i, « selectrandomi € Factoriesand i €& Si,;
11: Siy « Sip U{i,};
12: End
13: Allocation Procedure 1(Sj,, Sko);
14: Allocation Procedure 1(Sig, Sjy);
15: Return( Siy U Sjj);

111.4. 2 Neighborhood Creation procedure

The neighborhood generation procedure creates a neighbor solution S,, of the current

solution S as follows:

Mainly, the algorithm creates S,, based on the swap move. The swap move consists of
changing an opened facility (a warehouse or a factory) with a closed one. The facility to be
closed is selected randomly however, we open a randomly selected facility but from the best
ones. The facility is selected from the top 6 of closed facilities that have the best ratio:
capacity/opening-cost. In addition to the swap move, we perform add and drop moves on the
solution if the move applied improves the solution quality.

Details of how the S,, solution is created can be found in Algorithm 14. First the algorithm
performs the swap move in the first level. In fact, the swap move we propose can create
infeasible solution, and therefore, we perform the add move if there is any not satisfied client.
After that, we perform the allocation procedure “Allocation Procedure 1” which allow us
to compact all demands of clients into the most appropriate facilities (including the new one).
Consequently, after this procedure, we perform the drop move to remove not used facilities
(determined by Allocation Procedure 1). After finishing level 1, the algorithm performs the

same steps on the level 2 (see steps from 7 to 12). Then, and after determining the
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configuration of the facilities to be opened in the first and the second steps, we delete the old
allocation made and we re-allocation clients (customers and opened warehouses) to the
facilities using the second allocation procedure “Allocation Procedure 2”. At the end, we
construct the final solution S,, by the elements of the level 1 and level 2. The allocation

procedure Procedurel and Procedure2 are presented in detail in the following sub-section.

Algorithm 14 : Neighborhood Creation Procedure ( Siy, Sj, , Sk)

1: §j, < swapFacilty(Sj,) ;

2: If (customers are unsatisfied) do

3: | addFacility(Sj,) ;

4: End

5. Allocation_Procedure_1(Sj,, Sk) ;

6: dropFacility(Sj,) ;

7. Si, < swapFacilty(Siy) ;

8: If (customers are unsatisfied) do

9: | addFacilty(Siy) ;
10: End
11: Allocation_Procedure_1(Si,, Sj,) ;
12: dropFacility(Si,) ;
13: Allocation_Procedure_2(Sj,, Sk) ;
14: Allocation_Procedure_2(Si,, Sj,) ;
15: Return ( Si,, U Sj,);

I11.4. 3 Allocation procedures

The allocation is a very important part of the problem. In this work, we propose two
allocation procedures to allocate clients to the opened facilities. The first procedure
(Allocation Procedure 1) allocates the client to the best facility to minimize opening costs.
The second procedure (Allocation Procedure?2) allocates the client to the nearest facility to

minimize shipping costs.
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111.4.3.1 Allocation Procedure 1: allocate the best client to the best facility

The Allocation Procedure 1 allocates the best client to the best open facility, where the
best client is determined by its demand, and the best open facility is identified based on the

highest ratio: capacity /opening-cost.

At each iteration, the best facility g with available capacity is selected to meet the
demands of unsatisfied clients. Afterwards, the unsatisfied clients are ranked from the best
to the worst according to the quantity of demands. Once ranking is made, the facility g begins
to meet the demands of clients according to their rank, until it is empty. The facility g tries
to meet the clients demand completely and, if not, partially. If a client is met partially, then
we update his demand and we consider him as an unsatisfied client otherwise he is
considered as a satisfied client. The procedure ends when all clients are satisfied or there is

no available facility.

Algorithm 15: Allocation_Procedure_1(Sf, S.)

1. Sp < Sp S < Ses
2: While (S;, # @and S, # @ )
3: facilityg < select the best open facility f € S, ;
4: rankingClients(S.,);
5: While (facilityg. stock # 0)
6: clientys; < select best clientc € S, ;
8: If (facilityg. stock = c,.demand)
9: Update Sf;
10: Update facilityg.stock;
11: Ser < Ser — {clientpest };
12: Else
13: Update Sf;
14: Update clienty,g. demand;
15: S¢r < Sp — {facilityg};
17: End
18: End
19: End
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111.4.3.2 Allocation Procedure 2: allocate client to the nearest facility

The main idea of Allocation Procedure 2 is to allocate the client to the nearest open

facility with available capacity.

At each iteration, an unsatisfied client a is selected randomly to send a request to the
nearest open facility # with available capacity. When the facility 3 receives the request of a
he add it to the concurrent clients list with the rest of unsatisfied clients who consider £ as
the nearest open facility and arranges the clients in the list from the best to worst where the
best client is the client with the big quantity of demand. Once the list of concurrent clients
IS obtained, the next step for # is to meet the client's demand based on the priority ranking
of each client in the list. g will continue meeting the demands of clients in the list completely
and, if not, partially until either all the clients in the list are satisfied or # becomes empty.
The client that we meet his demand partially, we update his demand and we consider him as

an unsatisfied client. The procedure ends when all clients are satisfied.

Algorithm 16: Allocation_Procedure_2(Sy, S.)

1: Sf, «— Sf; Scl « Sc;
2: While (S, #@and S;, #0 )
3. client, « select random clientc € S, ;
4: facilityg < nearest open facility (¢, client,);
5: Ciist < concurentClientList( facilityg, S.,);
6: While (facilityg.stock # 0 and Cjee + @)
8: clientys; < select the best client ¢ € Cjist ;
9: If (facilityg. stock = clientyes;. demand)
10: Update (5¢);
11: Update (facilityg);
12: Cuist < Cust — {cp};
13: Ser < Ser —{cph
14: Else
15: Update St
17: Update (clienty,s:- demand);
18: Sgr « Sp — {facilityg};
19: End
20: End
21: End
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I11.4. 4 Acceptance criterion method

The acceptance criterion method is the method which determines whether the new
neighbor solution is either accepted or discarded using the most popular and common
acceptance criterion e~®?/T), At each iteration we compute the fitness variation A between
the current solution S and the neighbor solution Sn where A= f(Sn)-f(S) (f is the function
which calculates the cost of the solution). If A <0, then Sn is accepted directly and becomes
the current solution (we replace S by Sn); otherwise, the neighbor solution is accepted with

a probability p = e~®/T) | where T is the current temperature.
I11.4. 5 annealing method

The annealing method is the manner of decreasing the temperature progressively and it is
considered as one of the keys of the success of any simulated annealing-based algorithm.
First, we start with high-value temperature TO (T <--- TO) and then we keep decrease the
current temperature T when the algorithm is progressed. There are several methods for
decreasing the temperature, in our algorithm we use the continuous decrease method where,

at each iteration, we decrease the temperature using the formula T=o xT; and o =0.99.
111.5 Conclusion

In this chapter we presented our Simulated Annealing based algorithm to solve Two stage
capacitated facility location problem with single commodity and multi-source. At first, we
started by the mathematical definition of the problem and the most related work, then we
presented the algorithm. Moreover, we highlighted all parts of the algorithm by giving details
of each one including: the initial solution procedure, neighborhood generation procedure,
the acceptance criterion method and the annealing method. In the next chapter, the proposed
algorithm will be tested using benchmark data set from the literature and the obtained results

will be compared with those of the most related works.
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1VV.1 Introduction

In this chapter, we will present the experiments performed to test the efficiency of our
algorithm. The chapter begins with a detailed description of the benchmark-instances
proposed by [64], including the methodology employed for their generation. In addition, an
illustrative example of one such instance will be provided. Then, we show the obtained
results when we tested the components of the proposed algorithm. Finally, we compare the

obtained results with the results which are in the literature.

V.2 Description of benchmark data set

The instances used were presented in [64]. The authors have generated 50 instances for

the TSCFLP using the following parameters:

number of factories I = 50 or 100 .
set number of warehouses J =2 X I.

number of customers K = 4 X I
. B — ZkEII(qk
P = Ykek Ak

J
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Parameter Classl Class2 Class3 Class4 Class5
b; [2B 5B] [5B 10B] [15B 25B] [5B 10B] [5B 10B]
fi [2 X 10* 3 x 10%] [2 x 10* 3 x 10%] [2 x 10* 3 x 10%] [2 X 10* 3 x 10%] [2 X 10* 3 x 10%]
cij [35 45] [35 45] [35 45] [50 1 x 10?] [35 45]
D, [2P 5P] [5P 10P] [15P 25P] [5P10P] [5P 10P]
g; [8x 103 1.2x10%]  [8x10% 1.2x10%]  [8x10% 1.2x10%*  [8x103 1.2x10*]  [8x 103 1.2 x 10%]
djx [55 65] [55 65] [8 X 102 1 x 103] [50 1 x 102] [8 X 102 1 x 103]
dr [10 20] [10 20] [10 20] [10 20] [10 20]

Table 1 : parameters used to generate instances

Finally, it obtained two set of instances. the first set consists of 25 instances divided into five instance classes whit 1=50. In the second set, also

with 25 instances, divided into five instance classes whit 1=100. All instances can be found at https://github.com/pehgonzalez/OCA, along with the

binary file to reproduce the experiments.
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IV.2. 1 Capture of instance

in the next figures we present a capture of one instance (PSC1-C1-50) of 50 factories 100
warehouses and 200 customers in class 1.

282 298 27az2 IaE 1a7 95749

283 274 29545 ISz 115 1&1a3

284 217 22803 FIaa a5 3498

ZB5 1=E 25144 IG5 88 S81s1

286 224 24148 IBE S2 115al

287 199 28766 a7 1as 5286

2G5 277 27295 Fas 93 1133E

289 264 27157 a9 S92 9217

218 254 ZT7ass F1éa FTE OA1ZZ2=

211 288 2aloa 311 T 8497

212 283 25258 F1Z A17 EB5E86

Figure 9: example of factories instance Figure 8 : example of warehouses
instance

1 58 188 264 252 43 42 41 35 41 37 3B 42 36 43

2 11 353 41 42 42 48 38 43 30 42 3§ 35

3 18 254 30 37 37 42 36 43 36 35 42 35

4 15 255 35 36 43 35 4@ 45 37 37 35 42

5 15 256 42 48 41 41 39 36 4@ 43 35 35

& 12 257 4@ 44 38 44 41 39 43 48 45 39

714 258 38 42 36 38 42 44 38 36 41 35

g 17 250 41 36 37 44 37 36 44 41 41 44

C 260 43 44 3% 37 36 40 35 45 43 36

18 28 261 36 43 37 39 41 42 35 45 43 39
262 36 39 39 44 35 40 43 38 45 45

Figure 6 : example of customer’s

. Figure 7 : example of shipment cost
instance

from factories to warehouses

482 g8 65 61 35 61 58 5B 64 62
483 56 64 62 65 65 54 65 5B 36

485 65 61 65 61 6@ 52 64 56 35
486 62 56 59 60 65 63 5B 63 63
4a7 58 62 61 61 &4 56 63 68 65
488 6l 56 64 55 61 59 57 63 59
489 58 59 61 55 &4 56 61 65 62
418 59 65 55 64 55 59 56 63 62
411 56 64 61 63 63 54 56 56 62

Figure 10 : example of shipment cost
from warehouses to customers
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V.3 Experiments results

In this sub-section, we will present the obtained results of the proposed algorithm. In fact,

we will try to highlight the obtained results by each component of the algorithm as following:

First, we show the obtained results by only the initial solution procedure, then we present
the obtained results by the SA but only using the “allocation procedure 1” and finally we
present the obtained results by the complete version of SA that means including the two
allocation procedures. This will allow us to highlight clearly the contribution of each part of
the algorithm in the final obtained results.

IV.3. 1 Parameters and implementation details

The SA-algorithm was implemented in Java, utilizing the Java SE-17 compiler. All
experiments were conducted on a PC equipped with an Intel Core i5-4210U processor,
operating at 1.70 GHz (with a maximum turbo frequency of 2.40 GHz), and 12GB of RAM.
In our algorithm, we use the following parameters: an initial temperature T=350 000, number
of iterations i =3 500 and decreasing the temperature at each iteration using the formula
T=0 XT where a = 0.99.
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The generated solution contains the open facilities ids and the shipments from each open facility to its customers. A single shipment is composed

of the customer id and the quantity sent. In the next table we present the structure of generated solution.

Nbr of open factory 1 2 3 4 5 6 n-1 n
factory id 1 10 12 20 23 24 | 45 46
_ shipment 1 shipment 2 shipment 3 shipment n
e open factory id warehouse , warehouse quantit warehouse quantit | T warehouse quantit
o , quantity , , ,
oy id id y id y id y
5 1 66 88 97 22 86 21 | e 69 144
10 22 118 11 117 / /| 43 45
46 100 119 48 132 53 30 | e, 42 17
Nbr of open 1 2 3 4 5 6 n-1 n
warehouse | | | T T T e
warehouse id 11 19 22 31 34 38 97 100
= shipment 1 shipment 2 shipment 3 shipment n
< . N N e, | eeeccccsccccccccccce .
h d
% open warehouse ! customer id Qut;ntlt customer id qu¢;ntlt customer id qutzlntlt customer id qut;ntlt
=]
® 11 22 16 109 15 123 14 | e 81 5
19 23 20 41 20 113 19 | e, 45 6
100 78 18 143 11 13 K IR 63 4

Table 2 : Generated solution structure

In the next figure, we present a complete solution obtained by the SA algorithm with its corresponding costs and constraints-checking values.
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A B 4 D E F G H 1 J K L M N 0 P Q R
1 |factories
2 [factories id__| 1] 1% 1] 1] 28] 3] 3] 31] % 5] 18]
2 [opening cost_| mn| 2019 20852 22115] 20008]  20817] 23888 22630 2840 21788] 21577)
5| tacories id shipment 1 shipment 2 shipment 3 shipment & shipment 5
6 warehouse id | quantity | warehouse id | quantity | warehouse id | quantity | warehouse id | quantity | warehouse id | quantity
7 R I @8 | 86 | 110 7 | 4 ]
8 20 9 070 1680 337
9 N n | 18 11 [ 7 %3 [ &
10 130 1055 1575
1 N g | 15 3 | 14
12 5075 360
13 2 w150 57 [ 13 6 12|
1 5250 2830 20 |
15 N EET 31 |
16 5111 a2
17 N ® | 1 | 1
18 5400 156
19 5 % | 15 6 [ = 31 0| [ 2] 78 62|
20 2025 3255 760 [ 78 | 2604 |
21 o 8 | 14 R
» 5110 3455
23 N 69 | 144 E 3 1] a7 85 |
b2) 5328 1080 37 [ 3130 |
2% 5 o | 13 3 [ 1
2% 1655 5032
7 % 00 | 148 65 [ 12 8 | 4 |
28 5180 5110 184 |
29 |warehouses
30 | warehouse id | 6 [ ] [ 31 3 [ 3 ] 3 [ & 43 [ & % [ 57 [ 65 [ 66 69
:} opening cost 8285 888 | 837 | 10670 | 11646 | 8737 | 8970 | 8353 | 10425 | 837 | 828 | 9997 | 8837 | #ese | 10606 | 6248 | 808
3| arehouse id shipment 1 shipment 2 shipment 3 shipment & shipment 5 shipment 6 shipment 7 I shipment 8 | sl
34 customer id \uuan[itv customer id \quan(iw customer id \uuan[itv warehouse'\d\quan(iw customer id \uuan[itv customer id \quan(iw customer id \uuan(itv\warehouse'\d\quan(iw\ custom
35 c Bz | g | % | 1 B | 1 8 | 18 13 | ¢
36 1100 1100 1045 1045 350 35

solutionmanual | factories  FtoW  warehouses  WtoC  customers  Feuill + HER | »

Figure 11 : example of check by hand of a generated solution

1VV.3. 3 The obtained results

In this sub-section, we will present the obtained results for all instances after 10
executions for each instance where table 3 represent the obtained results for the first set of
instances and where table 4 represent the obtained results for the second set of instances.

In table 3 and 4 "Cost" represents the best cost obtained, "Best" is calculated as a ratio

Cost — LowerB

with the Lower Bound as presented by [67] and measured as following I p— 100

, "Time" represents the time taken to obtain the results of best solution in seconds, "AVG"

refers to the average cost for 10 iterations.
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Instances lower B SA Initial solution SA without allocation procedure 2 Complete Proposed SA
Class | ID Cost Best Time AVG Cost Best Time AVG Cost Best Time AVG

1| 7212096 919570 27,50 0,002 952917,1 746 905 3,56 6,99 747 408,7 723312 0,29 38,48 7244184
2 | 7304516 951321 30,24 0,004 966 876,9 757 348 3,68 8,76 759 350,8 733648 0,44 36,52 734959,3

1 3 | 731885,3 926004 26,52 0,003 972337,7 755 598 3,24 6,55 758663,6 735465 0,49 42,09 736855,9
4 721 515,0 917844 27,21 0,003 953 461,7 752 129 4,24 6,29 752 811,7 726 521 0,69 33,78 726 990,1
5 | 713633,8 933097 30,75 0,004 982 856,9 749 049 496 6,23 749 437,1 725012 1,59 36,53 725917,6
1| 479860,2 588410 22,62 0,002 614 150,7 515939 7,52 3,73 517 031,5 495571 3,27 8,51 496 464,0
2 | 4830722 587344 21,59 0,002 610949,8 520558 7,76 3,60 521 349,2 499307 3,36 8,37 499 895,2

2 3 | 486018,5 607602 25,02 0,002 6237391 515 089 5,98 3,90 517312,6 497139 2,29 10,68 4977825
4 | 482374,6 590025 22,32 0,001 617208,1 516 286 7,03 3,64 516 438,5 495135 2,65 9,01 495 976,8
5 | 474803,3 573902 20,87 0,002 607 540,2 513 206 8,09 3,77 514 442,8 491684 3,56 10,12 492 372,2
1 |2608800,0 | 2930202 12,32 0,001 2956962,6 | 2733709 4,79 2,17 2743738,7 | 2705893 3,72 5,27 2707390,2
2 |2616252,0 2933507 12,13 0,001 2956547,7 | 2742314 4,82 2,19 2754347,4 | 2717227 3,86 5,22 2 719 006,0

3 3 |12598277,0 | 2917165 12,27 0,001 29460608 | 2719196 4,65 2,23 2731076,7 | 2703275 4,04 5,23 2704 079,8
4 12612534,0| 2944401 12,70 0,001 29642009 | 2734527 4,67 2,23 2746738,2 | 2706294 3,59 5,19 2708 217,7
5 |2568856,0 | 2895540 12,72 0,001 2911730,4 | 2687143 4,60 2,22 2702786,9 | 2662582 3,65 5,28 26633379
1| 525294,1 737177 40,34 0,001 767 275,2 626816 19,33 3,70 637 590,0 551658 5,02 18,52 5529645
2 526 911,7 736 149 39,71 0,002 765 425,7 629 212 19,42 3,56 639 562,7 549 275 4,24 16,72 549 830,2

4 3 | 532592,3 742334 39,38 0,002 775179,7 631716 18,61 3,85 635 978,9 552070 3,66 20,89 553585,8
4 | 529372,0 749952 41,67 0,001 768028,3 631316 19,26 3,58 635 253,9 549097 3,73 18,29 550117,2
5 | 521470,1 726845 39,38 0,005 7634327 629 126 20,64 3,78 635 138,7 541153 3,77 19,30 543 439,5
1 |2743547,0 | 3127904 14,01 0,002 31517685 | 2851001 3,92 3,63 28697555 | 2786366 1,56 24,04 27873982
2 |2752021,0 | 3113600 13,14 0,002 3142294,4 | 2871450 4,34 3,65 28860219 |2792014 1,45 20,40 2794163,7

5 3 12737769,0 3104794 13,41 0,001 31432764 | 2871790 490 3,77 2886664,6 (2778149 1,47 24,05 27801510
4 12748216,0 | 3117863 13,45 0,001 3143600,2 | 2854537 3,87 4,00 28769984 | 2785792 1,37 20,24 2786414,7
5 12702350,0 | 3036409 12,36 0,002 3093930,2 | 2809580 3,97 4,14 28392256 | 2746127 1,62 20,58 2748213,6
Average 23,34 0,002 7,91 4,09 2,62 18,53

Table 3: Obtained results for the first set of instances (50 factories, 100 warehouses and 200 customers)
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Instances lower B SA Initial solution SA without allocation procedure 2 Complete Proposed SA
Class | ID Cost Best Time AVG Cost Best Time AVG Cost Best Time AVG

1|1475952,0| 1828300 23,87 0,019 1904589,5 | 1533052 3,87 41,66 1537779,2 | 1480429 0,30 405,85 1480977,5
2 | 1462736,0 | 1823845 24,69 0,015 1893230,8 | 1528191 4,47 42,28 1531741,7 | 1475778 0,89 394,56 1476677,2

1 3 11492163,0 | 1875837 25,71 0,016 19228455 | 1547170 3,69 43,11 1555074,6 | 1497995 0,39 456,50 1502311,5
4 |1459076,0 | 1895797 29,93 0,010 19186655 | 1515897 3,89 41,58 1518511,4 | 1465682 0,45 423,06 1466768,9
511490742,0 | 1877397 25,94 0,013 1922156,6 | 1545163 3,65 41,66 1546440,3 | 1494759 0,27 412,23 1495309,8
1| 9709085 | 1197620 23,35 0,008 12290169 | 1018378 4,89 22,30 1021266,9 976560 0,58 74,57 977147,2
2 | 965908,5 | 1179390 22,10 0,008 1218840,7 | 1015569 5,14 22,00 1016285,9 972748 0,71 74,36 973603,3

2 3 | 975499,7 | 1200219 23,04 0,008 1227977,0 | 1024070 4,98 22,85 1026119,4 979345 0,39 75,33 979982
4 | 973019,1 | 1197199 23,04 0,006 1224062,5 | 1025588 5,40 14,12 1026777,2 | 982423 0,97 76,81 983180,6
5| 941567,0 | 1160492 23,25 0,008 1188339,7 | 1000789 6,29 16,67 1002318 955500 1,48 75,82  956156,2
1 |5213566,0 | 5854408 12,29 0,004 5895507,2 | 5357476 2,76 7,12 53922222 | 5321644 2,07 47,06 5322853,1
2 |5191321,0| 5845047 12,59 0,004 5882381,3 | 5350515 3,07 7,13 5369124,5 | 5304652 2,18 46,61 5305048,9

3 3 |15145991,0 | 5777355 12,27 0,004 58277953 | 5289782 2,79 7,48 5329680,2 | 5243340 1,89 46,42 5243909,4
4 | 5225601,0 | 5893207 12,78 0,004 5927335,1 | 5385645 3,06 7,08 5410191,5 | 5337794 2,15 48,77 5338638,1
5 |5163182,0 | 5820673 12,73 0,003 5851301,6 | 5318879 3,02 7,11 5347076,3 | 5274329 2,15 47,10 5275829,7
1|1052172,0| 1460560 38,81 0,009 1512597,6 | 1240328 17,88 14,34 1260009,9 | 1071651 1,85 202,83 1075428,7
2 | 1043553,0 | 1453370 39,27 0,009 1514275 1249883 19,77 13,99 1259734,9 | 1063134 1,88 190,30 1064129,5

4 3 11050683,0 | 1488965 41,71 0,008 1529420,7 | 1236387 17,67 14,30 1264481,4 | 1078538 2,65 202,00 1080505
4 110445710 | 1470996 40,82 0,009 1510561,3 | 1228296 17,59 14,16 1263466 1065739 2,03 204,41 10675389
511053869,0| 1504979 42,81 0,008 1528956,3 | 1238348 17,50 14,37 1269588,6 | 1074316 1,94 199,87 1075366,8
1 |5486098,0| 6174225 12,54 0,007 6272719,7 | 5653295 3,05 14,49 5710603,9 | 5520471 0,63 288,03 5523024,6
2 | 5461680,0 | 6203103 13,57 0,005 6248659,9 | 5679190 3,98 14,17 5697361,3 | 5494412 0,60 287,40 5495848,1

5 3 54253910 | 6171247 13,75 0,007 6203726,7 | 5624333 3,67 14,32 5646171,8 | 5469275 0,81 319,25 5471081,4
4 15494811,0| 6262371 13,97 0,006 6294609,5 | 5677817 3,33 13,93 5714610,8 | 5531963 0,68 290,16 5533457,5
5 |5442621,0 | 6204209 13,99 0,007 6253702,6 | 5618477 3,23 14,17 5657522,4 | 5477523 0,64 459,14 5478812,2
Average 23,15 0,008 6,75 19,46 1,22 213,94

Table 4: Obtained results for the second set of instances (100 factories, 200 warehouses and 400 customers)
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Table 3 and Table 4 present the obtained results for all instance. Initially, the solutions
obtained by the initial solution procedure are not of good quality but as we can see the
procedure is very fast and it has an average running time of 0.002 second for the first set of
instances and 0.008 second for the second set of instances. By this running time, we assume
that this procedure can be transformed to a greedy or greedy randomized algorithm and used
for real-time system (where we need results in very short running time). Then we can see
from Table 3 & 4, that the SA without “allocation procedure 2” considerably enhances the
results obtained by the initial solution procedure by an average of 15.43% in the first set of
instances and 16.40% in the second set of instances while it still has good running times.
However, the complete SA consumes more running times than SA without “allocation
procedure 2”, we can see that the complete SA improves the results of SA without
“allocation procedure 2” by an average of 5.29% for first set of instances and by an average
of 5.53% for second set of instances. The results of the complete SA highlight clearly the

contribution of the use of the “allocation procedure 2” in the proposed SA.
IVV.4 Comparison with literature

In this sub-section, we compare our obtained results of the complete SA with those of the
literature. In table 5 and table 6 column "BST" represent of the best solution obtained and
column "AVG" represent the average of best solution obtained in 10 executions where they

are calculated as a ratio with the Lower Bound as presented by [67] and measured as

sol—- LowerB

following ——— x 100, where sol indicates the BST or AVG from each method. The

column "Time" is calculated as the average time in seconds for 10 executions.

Looking at Tables 5 and 6, we can observe that the obtained solutions are very
competitive comparing to the solutions of the literature. In term of solutions quality, we can
see that the average ratio of the best solutions obtained for the first set of instances is 2.62%
that means we get near to the literature methods by 0.64% to GA, 0.66 to CS+CPLEX,
0.62% to GRASPH and 0.69% to CS-ALNS-LB and the average ratio of the best solutions
obtained for the second set of instances is 1.22% that means we get near to the literature
methods by 0.26% to GA, 0.56 to CS+CPLEX, 0.47% to GRASPH and 0.58% to
CS-ALNS-LB.
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Instances lower B GA %4 CS+CPLEX 6% GRASPH %61 CS-ALNS-LB 191 SA

Class | ID AVG Time BST AVG Time BST AVG Time BST AVG Time BST AVG Time
1| 721209,6 | 0,13 264,78 | 0,13 0,22 48,90 0,13 0,13 4,50 0,13 0,13 15,41 0,29 0,44 40,64

2 | 7304516 | 0,40 257,17 | 0,23 0,31 76,86 0,24 0,24 21,34 0,23 0,23 21,02 0,44 0,62 36,26

1 3 | 7318853 | 0,24 263,35 | 0,21 0,29 51,94 0,22 0,22 30,46 0,21 0,21 55,22 0,49 0,68 41,24
4 | 7215150 | 0,81 242,93 | 1,19 1,41 96,62 0,50 0,50 29,08 0,50 0,50 18,98 0,69 0,76 34,05

5| 713633,8 [ 0,82 251,79 | 0,81 0,88 56,14 081 081 160,01 | 0,81 0,82 64,69 1,59 1,72 36,49

1| 479860,2 | 2,69 144,39 | 2,68 3,27 27,69 2,69 2,69 383,27 | 2,68 2,68 15,43 3,27 3,46 8,49

2 | 483072,2 | 2,30 144,16 | 2,30 2,62 81,36 2,30 2,34 368,558 | 2,30 2,30 64,89 3,36 3,48 8,37

2 3 | 486018,5 | 2,14 150,60 | 1,86 2,03 30,82 1,88 1,94 59094 | 1,86 1,86 48,02 2,29 2,42 10,85
4 | 4823746 | 2,04 142,25 | 2,01 2,01 83,02 2,02 2,02 36557 | 2,01 2,02 47,37 2,65 2,82 9,133

5 | 474803,3 | 3,14 126,08 | 3,12 3,39 36,98 3,12 3,12 590,87 | 3,12 3,12 33,33 3,56 3,70 9,62

1 | 2608800,0 | 3,07 12590 | 3,07 3,07 19,89 3,22 3,30 59603 | 3,07 3,10 104,13 | 3,72 3,77 5,32

2 |12616252,0 | 3,12 130,22 | 3,10 3,10 73,09 3,37 3,39 594,73 | 3,13 3,20 94,18 3,86 3,93 5,23
3 3 12598277,0 (3,11 123,56 | 3,09 3,10 52,98 3,23 3,32 591,33 | 3,09 3,14 77,21 4,04 4,07 5,237
4 |2612534,0 | 3,07 107,73 | 3,05 3,05 45,21 3,18 3,29 593,68 | 3,05 3,10 80,60 3,59 3,66 5,22

5 |2568856,0 | 3,01 110,36 | 3,01 3,01 47,45 3,14 3,22 593,27 | 3,01 3,03 76,79 3,65 3,68 5,26

1| 525294,1 | 3,14 138,25 | 3,14 3,60 89,47 3,29 3,29 591,54 | 3,14 3,14 39,42 502 527 18,50

2 | 526911,7 | 2,33 139,83 | 2,43 2,71 102,38 | 2,65 2,80 592,19 | 2,43 2,45 57,23 4,24 4,35 16,82

4 3| 532592,3 | 2,66 144,88 | 2,41 2,44 118,38 | 2,45 2,92 591,35 | 2,30 2,44 67,49 3,66 3,94 21,12
4 | 529372,0 | 2,53 127,30 | 2,35 2,66 133,69 | 2,36 2,50 591,31 | 2,35 2,36 55,50 3,73 3,92 18,41

5| 521470,1 | 3,13 120,27 | 3,15 3,53 11567 | 3,15 3,23 388,72 | 3,12 3,12 46,46 3,77 4,21 18,99
1|2743547,0| 1,20 164,42 | 1,19 1,19 157,20 | 1,24 1,31 591,33 | 1,16 1,18 64,60 1,56 1,60 21,87

2 |2752021,0 | 1,07 156,71 | 1,08 1,11 89,13 1,15 1,17 591,31 | 1,07 1,07 68,15 1,45 1,53 20,49

5 3127377690 1,10 191,60 | 1,09 1,10 126,33 | 1,29 1,30 591,78 | 1,09 1,13 70,37 1,47 1,55 25,37
4 | 2748216,0 | 1,07 136,87 | 1,05 1,12 149,59 | 1,06 1,07 591,67 | 1,05 1,07 67,09 1,37 1,39 20,55
512702350,0 | 1,25 145,07 | 1,24 1,24 54,96 1,29 1,34 592,50 | 1,23 1,25 67,90 1,62 1,70 21,74
Average 1,98 162,02 | 1,96 2,10 78,63 2,00 2,06 449,09 | 1,93 1,95 56,86 2,62 2,75 18,03

Table 5: Comparison obtained results for the first set of instances with literature

54




Chapter 4

Instances lower B GA %4 CS+CPLEX 6% GRASPH %61 CS-ALNS-LB %1 SA

Class | ID AVG Time BST AVG Time BST AVG Time BST AVG Time BST AVG Time
114759520055 1268,12 | 0,10 0,30 384,79 0,10 0,10 381,21 0,09 0,11 339,69 0,30 0,34 400,20

2 11462736,0| 1,01 1250,09 | 0,34 0,70 716,06 0,12 0,12 130,86 0,12 0,20 231,41 0,89 0,95 397,38

1 3114921630 0,34 1367,04 | 0,54 1,00 654,10 0,15 0,15 281,03 0,16 0,20 266,18 0,39 0,68 456,65
4 [1459076,0 | 0,49 1285,78 | 0,24 0,49 740,44 0,22 0,28 484,13 0,22 0,24 240,00 0,45 0,53 428,89
5114907420 | 0,67 130393 | 0,11 0,33 850,42 0,12 0,12 82,79 0,11 0,12 192,28 0,27 0,31 413,74

1| 9709085 | 0,89 67548 | 0,26 0,52 989,39 0,27 0,36 58420 | 0,26 0,30 310,07 | 058 0,64 75,51

2 | 9659085 | 0,74 662,96 | 0,28 0,46 668,55 028 0,34 55924 | 028 033 25751 | 0,71 0,80 75,16

2 3| 975499,7 | 142 650,19 | 0,14 0,25 992,58 0,14 0,14 48739 | 014 0,17 23691 | 039 0,46 73,61
4 | 973019,1 | 0,56 657,63 | 0,28 0,40 688,28 035 041 59281 | 029 0,32 326,07 | 097 1,04 76,90

5| 941567,0 | 1,12 646,23 0,60 0,65 858,06 0,86 1,06 592,22 0,60 0,69 283,63 1,48 1,55 76,96
152135660 | 163 61724 |162 163 111337 | 1,79 192 59874 | 162 166 600,74 | 2,07 2,10 47,11

2 151913210167 60151 |[165 165 131248 | 184 194 59633 | 167 1,71 503,07 | 2,18 219 46,59

3 3 15145991,0 1,558 597,43 |157 158 958,88 1,77 184 59441 | 158 161 491,88 | 1,89 1,90 46,37
4 15225601,0 | 1,74 622,04 |1,72 1,73 103346 | 2,01 209 60038 | 1,72 1,76 498,75 | 2,15 2,16 47,17
551631820172 629,84 |[167 169 1073,08 | 202 203 59438 | 173 1,75 51888 | 2,15 218 47,45
110521720082 57791 |061 087 1040,75 | 0,73 0,74 59413 | 065 0,78 31352 | 1,85 221 200,26

2 11043553,0 093 560,18 | 0,83 0,88 852,22 0,77 085 59365 | 067 0,71 31425 | 188 197 188,17

4 311050683,0|1,88 58440 | 0,62 0,81 677,12 1,20 1,77 59249 | 0,78 1,12 299,23 | 265 2,84 19595
4 11044571,0| 0,96 59263 | 0,74 094 109922 | 0,98 101 59438 | 0,80 0,90 303,95 | 2,03 2,20 205,05
511053869,0| 0,64 607,94 | 056 0,89 543,26 0,56 0,65 594,12 0,52 0,63 295,09 1,94 2,04 197,22

1 |5486098,0 | 0,48 706,40 | 0,38 0,40 801,30 0,43 0,54 593,59 0,38 0,40 326,89 0,63 0,67 286,15

2 | 5461680,0 | 0,47 683,08 0,39 0,44 849,41 0,40 042 593,52 0,38 041 285,26 0,60 0,63 286,64

5 3 |15425391,0 | 0,62 672,63 0,49 0,53 770,91 0,59 0,59 594,61 0,39 0,48 259,29 0,81 0,84 317,31
4 |5494811,0 | 0,52 689,38 0,43 0,47 657,66 0,50 0,51 593,16 0,41 043 322,00 0,68 0,70 291,60

5 | 5442 621,0 | 0,47 670,38 0,39 0,45 1323,85 0,46 0,48 592,62 0,38 0,40 262,75 0,60 0,63 457,41
Average 0,96 767,22 | 0,66 0,80 865,99 0,75 0,82 52386 | 064 0,70 331,17 | 1,22 1,30 213,42

Table 6: Comparison obtained results for the second set of instances with literature
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Furthermore, the SA outperforms the GA in the instances PSC4-C1-50, PSC1-C1-100,
PSC2-C1-100, PSC4-C1-100, PSC5-C1-100, PSC1-C2-100, PSC2-C2-100 PSC3-C2-100.
Also, it outperforms the CS+CPLEX in the instances PSC4-C1-50 and PSC3-C1-100.

On the other hand, we can observe that the SA has the best running time over all instances
with an average of 115.73 seconds comparing to 464.64 seconds of GA, 472.31 seconds of
CS+CPLEX, 486.48 seconds of GRASPH and 194.02 seconds of CS-ALNS-LB. So, we can
say that the SA proposed has a very good comprise between solutions quality and running
times comparing to the literature. In addition, we can assume that the SA can be improved
by adding other techniques/methods which will improve its solutions quality without losing

its competitivity in term of running times.

IVV.5 Conclusion

In this chapter we presented detail description of the benchmark-instances from the
literature. Then, we presented the results obtained by our algorithm where testing it on all

instances. Finally, we compared the obtained results with the results in the literature.
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Conclusion

The supply chain is the process of moving goods or services from the point of the origin
to the point of destination. The supply chain optimization is important for businesses because
it allows to reduce costs, improve customer satisfaction, minimize times and lead to respond

effectively to market demand.

In this thesis, we have proposed and validated a method to solve multi-source, single-
product TSCFLP, where the main objective was to find the best sub-set of facilities that meet

the demands of all customers with the lowest cost.

In the first chapter, we presented the most related location problems to our case such as
Capacitated, single-stage problem, multi-stage location problems. A general and brief
descriptions of the several variants of location problems (including two-stage capacitated

facility location problems) have been given with the most popular application in the real life.

In the second chapter we focused on the optimization methods and algorithms, where
exact, heuristic, metaheuristic and hybrid methods were presented. We Also provided some

of the most popular and efficient algorithms used in the field of optimization.

In the third chapter, we presented the TSCFLP problem where a mathematical model of
the problem from the literature is given. Then, we presented our proposed simulated
annealing algorithm to solve the problem that it has two main processes: the first is the
selection of facilities and the second is the allocation of customers. For allocation we have

proposed two procedures with the aim of improving the quality of solutions.

In the fourth chapter, we presented the obtained results and we compared them with the
most recent results found in the literature. The proposed SA obtained very competitive
results comparing to the results of the literature and it has the best running time over all.

Also, it outperforms the GA on 8 instances and the CS+CPLEX on 2 instances.
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Finally, we are looking forward to:
-Improve our algorithm using other facilities selection techniques .

- Propose another metaheuristic to solve the TSCFLP.
-Propose a hybrid algorithm which combine the proposed SA with another algorithm.

-Propose a similar algorithm to solve the Multi Stage Facility Location Problems.
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