
République algérienne démocratique et populaire
Ministère de l’enseignement supérieur et de la recherche scientifique

Centre Universitaire Abdelhafid Boussouf Mila
Institut des Sciences et Technologie

Département de Mathématiques et Informatique

MÉMOIRE DE MASTER
Pour obtenir le diplôme de Master en Informatique

Option : Sciences et Technologies de l’Information et de la
Communication (STIC)

——————————–

Hybrid Deep Learning Model-based For
Remaining Useful Life Estimation

——————————–

Réalisé par :
Bekhouche Ikram

Dounyazed Allam

Soutenue devant le jury:
President: Mr Dib Abderrahim Centre Universitaire de Mila – Abdelhafid Boussouf

Encadreur: Dr Khalfi Souheila Centre Universitaire de Mila – Abdelhafid Boussouf

Co-encadreur: Mme Abderrezek Samira ENS de Constantine – Assia Dejebar

Examinateur Dr Boulmerka Aissa Centre Universitaire de Mila – Abdelhafid Boussouf

Année universitaire 2022–2023

Acknowledgments

We would like to express our sincere gratitude to our supervisors through-
out this work, Dr. Khalfi Souheila and Mme. Abderezzek Samira, for the
guidance they have provided and the knowledge they have passed to us.

We are also thankful for the committee members, Mr. Dib Abderrahim and
Dr. Boulmerka Aissa, for agreeing to evaluate our modest work.

Furthermore, we want to express our profound acknowledgment to the schol-
ars whose academic works have significantly influenced our thesis. Their
notable contributions to the field have been an indispensable source of inspi-
ration and insight for our research.

Thank you.

ii

Dedication

: YªK. AÓ

@ ú

	
¯ð 	áÓ ð ù

	
®¢�ÖÏ @ I. �
J. m

Ì'@ úÎ«
�
èC�Ë@ ð ù

	
®» ð é<Ë YÒmÌ'@

�
èQÖ

�
ß è

	
Yë A

	
J
�
KQ»

	
YÖß.

�
éJ
�@PYË@ A

	
J
�
KQ�
�Ó ú

	
¯
�
èñ¢

	
mÌ'@ è

	
Yë

	á�
Ò
�
J
�
JË A

	
J
�
®
	
¯ð ø

	
YË@ é<Ë YÒmÌ'@

ú

G
.
PYË @Pñ

	
K AÒêÓ@X

@ ð é<Ë @ AÒê

	
¢
	
®k 	áK
YË@ñË@ úÍ@

�
è @YêÓ úÍAª

�
K éÊ

	
�

	
®K. hAj.

	
JË @ ð Yêm.

Ì'@

P@ñ
�
�ÖÏ @ ZA

�
®
	
P̄ úÍ@

�
H@ñ

	
k

@ ð

�
èñ

	
k@

	áÓ È@ 	Q

�
K B ð ú

	
æ
�
KY

	
KA� ú

�
æË @

�
éÖß
QºË@

�
éÊ

KAªË @ É¾Ë

úÍ@

ú

Í
�
B@ ÐC«B

@ ð

�
HAJ

	
�AK
QË @ Õæ�

�
¯ H. C£ ð

�
è
	
Y
�
KA�

@ 	áÓ é

�
KA
	
¢mÌ ú

	
GñÖÞ�A

�
¯ 	áK

	
YË @

	áK
YË@ hC� ø

Q
	
m�� YJ
�Ë@ð É�J

	
¯ hðXñK. YJ
�Ë@ ÑîD�

@P úÎ« ð ÉÒªË@ ZCÓ 	P

. Qº
�
�Ë@ ÉK

	Qk. ÕºË

iii

Dedication

úÍ@

èQ�
��

�
K ð é

�
®J

	
¯ñ
�
K ð é<Ë @

	
àñªK. Õç

�
' ø

	
YË@ ©

	
�@ñ

�
JÖÏ @ ÉÒªË@ @Yë ø

Yë@

	
à@ ú

	
æ
	
Q̄å
�
��

. ú

Í èAÓY

�
¯ AÓ É¿ úÎ« ù

	
®ºK
 AÖß. AÒëQº

�
�

@
	
à

@ ú

	
æ
	
JºÖß
 B 	áK

	
YÊË @

	á�
Öß
QºË@ ø

YË@ð

ð ú

�
GAJ
k ú

	
¯
�
éÒª

	
K é<Ë @ ½Ó@X

@ ,

�
éJ
�@PYË@ ú

�
GQ�
�Ó ú

	
¯ ø

Y
	
J�

�
IË 	PB ð

�
I

	
J»

�
éJ
ËA

	
ªË @ ú

×@

. YK
YÖÏ @ QÒªË@ð
�
èXAª�Ë@ð

�
éj�Ë@ ½

�
¯ 	PQK

	
à@ ñ«X@

úÎ« @Qº
�
� .

�
éJ
j

	
�
�
JË @ 	áÓ

�
éÊK
ñ£

�
H@ñ

	
J�

�
éj. J

�
�
	
K A

	
Jë Ym.

�'

ð Q

	
j
�
J
	
®K

	
à

@ ©J
¢

�
���

	áÓ , ú

G
.
@

�
HAÔgQË@ É¿ ú

G
.

@ AK
 ½gðP úÎª

	
¯ , ½

	
JÓ ZAg. ø

	
YË@ Õç

' @YË @ Ñ«YË@ð Õæ

Êª
�
JË @ð

�
éÊJ
�.

	
JË @ Õæ

�
®Ë @

. é<Ë @ 	áÓ
�
èQ
	
®
	
ªÖÏ @ð

ð 	áÒ
�
JK. PY

�
®
�
K B ú

�
æË@ ½

�
JÒëA�Ó úÎ« ¼Qº

�
�@ " Ð@Q» @" ÉÒªË@ @Yë ú

	
¯ ú

�
æÊJ
Ó

	P úÍ@

. A
	
J
�
JkðQ£@ hAm.

�
	
' �A�

@
	
àA¿ ø

YË@ ½

	
KðAª

�
K

�
èAJ
k ½Ë ú

	
æÖ
�
ß@ ú

æ
.

	
K Am.
�'
. AÖ

ß @X ú

�
æË @ " Õç'
QÓ"

�
èYJ
kñË@ ú

�
æ
	
k@

�
é�A

	
g ð Z@ 	Q«B@ ú

�
Gñ

	
k@ úÍ@

. hAj.
	
JË @ð I. m

Ì'AK.
�
é

JJ
ÊÓ

Q»X@ ð
	
à@Q�
m.

Ì'@ ð ù

KA
�
¯Y�B

�
éJ.jÖÏ @ ð

	
àA

	
Q̄ªË @ ð Qº

�
�Ë@

�
H@PAJ.« �ËA

	
m�'. ÐY

�
®
�
K

@

AêÖß
Y
�
®
�
K ð Aî

�
DÒëA�Ó ú

	
¯
�
è 	QK

	QªË@
�
éªJ
K. P ú

�
GPAg. ð

�
éJ
ËA

	
ªË @

�
é
	
K AÔg

.
ú

�
æ
�
®K
Y� �

	
kBAK.

. Ð @QºË@
�
è
	
Y
�
KA�B@ ð

�
é�@PYË@ ú

	
¯ ù

KCÓ 	P @Y» ð

	
àñªÊË

iv

�
	
jÊÓ

	áÓ
	

­J

	
®
	
j
�
JË @ ú

	
¯ AÓAë ð AÖÞ�Ag @PðX (RUL) ù

�
®J.
�
JÖÏ @ YJ

	
®ÖÏ @ QÒªÊË

�
�J

�
¯YË@ QK
Y

�
®
�
JË @ I. ªÊK

ÈC
	
g 	áÓð .

�
éËAmÌ'@ úÎ«

�
éÖ

ßA
�
®Ë @

�
é
	
K AJ
�Ë@ð �J

	
j

�
�
�
�Ë @ ú

	
¯ @

�
YK
Ym

�
�
'ð ,

�
é
	
JJ
» AÖÏ @ É

�
�
	
¯ Q£A

	
m×

	
YJ

	
®
	
J
�
K 	áºÖß
 , AêË ù

�
®J.
�
JÖÏ @ QÒªËA�K.

�
�J

�
¯YË@

ñJ.

	
�
�
JË @ð

�
é
	
JJ
» AÖÏ @

�
éËAg ð

	
¬ðQ

	
¢Ë

�
èQÒ

�
J�ÖÏ @

�
éJ.
�
¯ @QÖÏ @

.
�
éª
�
¯ñ
�
JÖÏ @ Q�

	
« ÈA¢«

B@ I.

	
Jj.

�
JË

�
éJ

KA
�
¯ð ð

�
éJ

�
¯AJ.
�
��@ Q�
K. @Y

�
K

�
èAJ
m

Ì'AK.

ñJ.

	
�
�
JË @ ú

	
¯
�
é
	
£ñjÊÓ

�
éJ
ËAª

	
¯

�
�J
ÒªË@ ÕÎ

ª
�
JË @ h.

	
XAÖ

	
ß �
HQê

	
£

@ ,

�
éJ

	
�AÖÏ @

�
H@ñ

	
J�Ë@ øYÓ úÎ«

úÎ«
�
èPXA

�
¯

�
HAJ

	
J
�
®
�
JË @ è

	
Yë .

�
é«ñ

	
J
�
JÓ

�
HA

�
®J
J.¢

�
� ÈC

	
g 	áÓ

�
é
�
¯YK.

�
é
	
J» AÒÊË

�
éJ

�
®J.
�
JÖÏ @

�
èYJ

	
®ÖÏ @

�
èY

�
®ªÖÏ @

�
HA

	
KAJ
J. Ë @

	áÓ ÈAª
	
¯ É¾

�
��. ú

	
æªÓ

�
H@

	
X

�
H@

	Q�
Óð AÖ
	
ß

@ h. @Q

	
j
�
J�@

É
	
ª
�
J��

�
�J
ÒªË@ ÕÎ

ª
�
JË @ úÎ« Õç

'A
�
¯

	á�
j. ë h.
	
XñÖ

	
ß h@Q

�
�
�
¯@ ñë

�
IjJ. Ë @ @

	
Yë 	áÓ ú

æ�J

KQË @

	
¬YêË@

	
àA

	
¯ñK. Pñ

�
K

�
HA¿QjÖÏ

�
éJ

�
®J.
�
JÖÏ @

�
èYJ

	
®ÖÏ @

�
èAJ
m

Ì'AK.
�
�J

�
¯X

ñJ.

	
�
�
K Q�

	
¯ñ
�
JË

�
èPñ¢

�
JÖÏ @

�
�J
ÒªË@ ÕÎ

ª
�
JË @

�
HAJ

	
J
�
®
�
K

�
HAJ

	
J
�
®
�
K Ð@Y

	
j
�
J�@ ÈC

	
g 	áÓ hQ��

�
®ÖÏ @ h.

	
XñÒ

	
JË @

�
é
�
¯X

	á�
�m�
�
' ÈðAm�

	
' , ½Ë

	
X YªK. .

�
H@Q

KA¢Ë@

.
	Q�
»
Q��Ë @

�
éJ
Ë
�
@ð �ð

ðQË@ XYª

�
K
�
é�Y

	
Jë É

�
JÓ

�
�J
ÒªË@ ÕÎ

ª
�
JË @ úÎ«

�
éÖ

ßA
�
¯

	á�
�m�
�
'

,
�
éj�Ë@

�
èP@X@

ð

ñJ.

	
�
�
JË @ , ú

«A
	
J¢�B@ ZA¿

	
YË@ ,

�
éJ

�
®J.
�
JÖÏ @

�
èYJ

	
®ÖÏ @

�
èAJ
m

Ì'@ :
�
éJ
kA

�
J
	
®ÖÏ @

�
HAÒÊ¾Ë@

. C-MAPSS ,
	Q�
»
Q��Ë @

�
éJ
Ë
�
@ �ð

ðQË@ XYª

�
K
�
é�Y

	
Jë ,

�
é
�
®J
ÒªË@

�
éJ
�.�ªË@

�
HA¾J.

�
�Ë@

v

Abstract

The precise estimation of Remaining Useful Life (RUL) holds crucial im-
portance in mitigating the risks of machine failures, specifically in prognosis
and condition-based maintenance (CBM). Through continuous monitoring of
machine conditions and accurate RUL prediction, preemptive measures can be
implemented to avert unforeseen breakdowns.

Over the past years, deep learning models have demonstrated remarkable
effectiveness in accurately predicting RUL across diverse applications. These
techniques are able to effectively extract meaningful patterns and features from
complex data.

The primary objective of this Master’s thesis is to propose a hybrid deep-
learning model that leverages advanced deep learning techniques such as
multi-head architecture and attention mechanism, to offer an accurate progno-
sis of the Remaining Useful Life (RUL) for airplane turbofan engines.

Keywords: Remaining Useful Life, Artificial Intelligence, Prognostics and
Health Management, Deep Neural Networks, Multi-Head Architecture,
Attention Mechanism, C-MAPSS.

vi

Résumé

L’estimation précise de la Durée de Vie Utile Restante (DVUR) revêt une
importance primordiale dans les stratégies de pronostic et de maintenance
basée sur l’état (MBE). La prédiction de la DVUR joue un rôle essentiel dans la
réduction des risques liés aux défaillances des machines. Grâce à la surveillance
continue des conditions de la machine et à une prédiction précise de la DVUR,
des mesures préventives peuvent être mises en œuvre pour éviter les pannes
imprévues.

Les méthodologies d’apprentissage en profondeur ont démontré une effi-
cacité remarquable dans la prévision précise de la DVUR dans diverses appli-
cations. En exploitant les capacités des réseaux neuronaux et des algorithmes
avancés, ces techniques décryptent avec compétence des données complexes,
extrayant des motifs et des caractéristiques saillantes.

L’objectif principal de cee memoire est de proposer un modèle hybride basé
sur l’apprentissage en profondeur qui exploite des techniques d’apprentissage
en profondeur sophistiquées pour fournir un pronostic précis de la Durée
de Vie Utile Restante (DVUR) pour les moteurs turboréacteurs d’avion. En-
suite, nous tentons d’améliorer la précision du modèle proposé en utilisant des
techniques d’optimisation basées sur l’apprentissage en profondeur, telles que
l’architecture multi-têtes et le mécanisme d’attention.

Mots clés :
Durée de Vie Utile Restante, Intelligence Artificielle, Pronostics et Gestion de
la Santé, Réseaux Neuronaux, Architecture Multi-Têtes, Mécanisme
d’Attention, C-MAPSS..

vii

Contents

Acknowledgments ii

Dedication iii

Dedication iv

Abstract v

Contents viii

List of Figures x

List of Tables xi

General Introduction 1

1 Deep Learning 4
1.1 Preliminaries . 5

1.1.1 Artificial Neural Networks . 5
1.1.2 Activation Functions . 5
1.1.3 Loss functions . 7
1.1.4 Optimizer . 8
1.1.5 Batch normalization . 9
1.1.6 Forward propagation and Backpropagation 9
1.1.7 Evaluation Metrics . 10
1.1.8 Hyper-parameters . 11

1.2 Basic Deep Learning Architectures . 13
1.2.1 Convolutional Neural Network . 13
1.2.2 LSTM . 15

viii

1.2.3 GRU . 15
1.3 Deep Learning Frameworks . 16

1.3.1 TensorFlow . 16
1.3.2 Keras . 17

2 An Overview On Remaining Useful Life 18
2.1 Maintenance Definition . 18
2.2 Maintenance Types . 19

2.2.1 Corrective maintenance . 19
2.2.2 Preventive maintenance . 19

2.3 Remaining Useful Life of an equipment . 21
2.4 Modeling Methods of RUL Estimation . 22

2.4.1 Physics-based models . 22
2.4.2 Data-driven models . 23
2.4.3 Hybrid models . 26

2.5 Deep Learning Techniques For RUL Estimation- Related Works- 26

3 Contribution: Development of a Hybrid Deep Learning Model for RUL Esti-
mation 28
3.1 Methodology: Common Steps for Building a Model for a Regression Problem 28
3.2 Motivation . 30
3.3 Data Description - C-MAPSS Dataset - . 30
3.4 Data Pre-processing . 31
3.5 Contributions . 34

3.5.1 The first proposed model: CNN-GRU hybrid 34
3.5.2 The second proposed model: FNN model 34
3.5.3 The Effect of the Attention Mechanism 36
3.5.4 The Effect of Multi-Head Architecture 36

3.6 Experimental Setup . 39
3.7 Results and Discussion . 39

3.7.1 Performance Analysis of the Proposals 39
3.7.2 Comparing the Best Models to State-Of-The-Art-Results 42

General Conclusion 45

Bibliography 47

Acronyms 53

ix

List of Figures

1.1 Introduction to deep learning [Aggarwal et al., 2022] 5
1.2 A basic artificial neuron network [Krogh, 2008]. 5
1.3 Backpropagation expletive illustration. 10
1.4 Gradient Descent Algorithm. 12
1.5 Architecture of the CNN. 14
1.6 The architecture of LSTM memory block. 15
1.7 The architecture of Gated Recurrent Unit. 16

2.1 Predictive maintenance. 19
2.2 Predictive maintenance. 21
2.3 The concept of remaining useful life (RUL) [Sikorska et al., 2011]. 22
2.4 Modeling methods of RUL estimation. 22
2.5 Flow chart of physics-based models approach . 23
2.6 Statistical approaches classification. 23
2.7 Flowchart of auto-regressive approaches for RUL prediction. 24
2.8 Machine learning approaches. 25
2.9 Machine learning approaches workflow. 26

3.1 Diagram of turbofan engine modules [Hong et al., 2020]. 31
3.2 Visual Comparison of Linear Degradation vs. Piecewise Linear Degradation. . 33
3.3 Flowchart for the sequential models. 37
3.4 Flowcharts for multi-head models. 38
3.5 Predicted RUL by CNN-GRU hybrid model W/AM. 43
3.6 Predicted RUL by FNN multi-head model. 43

x

List of Tables

3.1 C-MAPSS outputs to measure system response. [Saxena et al., 2008]. 32
3.2 Summary of C-MAPSS Dataset Subset [Saxena et al., 2008]. 32
3.3 Hyper-parameters and configurations of the CNN-GRU hybrid model. 35
3.4 Hyper-parameters and configuration of FNN model. 35
3.5 Characteristics of the computers used in this work. 39
3.6 The results for the CNN-GRU hybrid and FNN sequential models. 40
3.7 The results for the CNN-GRU hybrid and FNN sequential models with atten-

tion mechanism. 40
3.8 The results for the CNN-GRU hybrid and FNN multi-head models. 41
3.9 The results for the CNN-GRU hybrid and FNN multi-head models with atten-

tion mechanism. 41
3.10 The results for the improved FNN multi-head model (without attention mech-

anism). 41
3.11 Comparing our models with some of the state-of-art results. 42

xi

General Introduction

Maintenance has emerged as a critical aspect across diverse industries, including in-
dustrial, commercial, and information technology sectors. Its scope has expanded beyond
mere repairs to encompass Condition-Based Maintenance (CBM), a proactive approach
that monitors equipment or system conditions. By leveraging this approach, organizations
can enhance reliability, reduce repair costs, and, crucially, anticipate failures to prevent
potential financial losses and human casualties. This preventive aspect of maintenance,
coupled with its ability to foresee potential issues, allows organizations to take proactive
measures, ensuring operational continuity, minimizing unplanned downtime, and safe-
guarding against costly repairs or hazardous incidents. By integrating these strategies,
maintenance has become a pivotal function that not only ensures the smooth functioning
and longevity of equipment and systems but also mitigates risks and safeguards both
financial resources and human well-being.

A key objective of Condition-Based Maintenance is to accurately estimate the Remain-
ing Useful Life (RUL) of machines or equipment. RUL represents the amount of time
or usage remaining before a piece of equipment reaches a critical state of degradation or
failure. This estimation is achieved through the implementation of equipment condition
monitoring techniques, including sensor data collection, data analysis, and predictive
modeling. RUL estimation serves as a vital tool in Prognostics and Health Management
(PHM), offering several benefits such as resource optimization, cost reduction, enhanced
safety and reliability, and extended asset lifespan. By accurately predicting the RUL,
organizations can strategically plan maintenance activities, allocate resources effectively,
minimize downtime, and maximize the operational efficiency of their assets. Ultimately,
RUL estimation empowers businesses to make informed decisions, optimize maintenance
strategies, and achieve significant improvements in overall equipment performance and
longevity.

RUL prognosis approaches can be broadly categorized into three main groups: physics-

1

based approaches, data-driven approaches, and hybrid approaches. Physics-based ap-
proaches emphasize a deep understanding of the equipment or system’s physical condi-
tion. They leverage comprehensive knowledge of the system’s structure, behavior, and
underlying physical processes. These approaches require expertise in modeling the sys-
tem dynamics and degradation mechanisms. On the other hand, data-driven approaches
rely on historical data collected from sensors, monitoring systems, or other sources. They
use advanced techniques, including deep learning and statistical modeling, to extract
valuable insights from the data. By analyzing patterns, trends, and correlations, data-
driven approaches can estimate the RUL of equipment or systems. These approaches are
particularly effective in capturing complex relationships and adapting to changing oper-
ating conditions. Hybrid approaches combine physics-based and data-driven methods to
enhance RUL predictions. They harness the best of both worlds by integrating physical
understanding with historical data analysis. This allows for more accurate and robust
predictions, adapting to varying conditions while incorporating prior knowledge of the
system’s behavior.

In recent years, Deep Learning (DL) has proven to be an effective tool for modeling
of higher-level abstractions through complex and Deep Neural Network (DNN) architec-
tures. It has been widely adopted and has been successful in various domains, includ-
ing computer vision and natural language processing. This success has also extended
its impact on Prognostics and Health Management (PHM) and Remaining Useful Life
(RUL) estimation. By leveraging Deep Learning methods, researchers and practitioners
have achieved promising results in PHM and RUL estimation tasks. Deep Neural Net-
works(DNN) with multiple layers are employed to learn complex patterns and extract
crucial features from sensor data, historical records, and other relevant information. This
enables the identification of hidden correlations and trends that may not be apparent
through traditional modeling techniques.

Convolutional Neural Networks (CNN), Gated Recurrent Unit (GRU) and Feed-forward
Neural Network (FNN) are among the most commonly used neural network architectures,
each designed to address specific types of data and learning tasks. The purpose of a neural
network is to process different types of data and perform various tasks such as classifica-
tion, regression, pattern recognition, and prediction. It is also common to combine two
types of neural networks to help surpass their limitations; for instance, CNN has proven
to be effective in extracting features from the input data, while GRU has the ability to
capture long-term dependencies. A hybrid CNN-GRU model can leverage the strengths
of each architecture to enhance overall performance.

Deep learning models can be improved using a range of techniques, including the
multi-head model. This approach is particularly effective when dealing with complex

2

problems. By breaking down the challenge into smaller sub-tasks, each head in the
multi-head model can focus on specific aspects of the data. This allows the model to
learn diverse aspects and features simultaneously, leading to more accurate predictions.
Another powerful technique in Deep Learning is the Attention Mechanism (AM), which
enables the model to selectively prioritize and emphasize the most informative parts of
the input data. This helps to improve the accuracy of the model’s predictions by allowing
it to focus on the most relevant temporal or spatial aspects of the problem.

To this end, the main goal of this thesis is to develop a hybrid model that uses deep
learning techniques to estimate the Remaining Useful Life (RUL) of airplane turbofan
engines. The study will focus on evaluating the effectiveness of the Attention Mechanism
and Multi-head architecture on the performance of our proposed model. Additionally,
a simpler model will be developed to further improve the study. Finally, the outcomes
will be compared with some of the state-of-the-art methods. Leveraging the NASA C-
MAPSS dataset as a reference, this research aims to mitigate the severe consequences of
unexpected engine failures.

This manuscript is structured as follows:
Chapter 1 discusses several fundamental concepts of Deep Learning, encompassing

background notions, the different architectures, and the most commonly used frameworks
for development in deep learning.

Chapter 2 explains what maintenance is and its different types, the concept of the
Remaining Useful life as well as the various approaches used for its estimation.

In Chapter 3, we outline the steps involved in building a Deep learning model and
introduced briefly the C-MAPSS data-set. We also described our proposed models and
assessed their effectiveness by comparing the results obtained to some state-of-the-art
studies.

3

Deep Learning

Chapter

1

Introduction

Artificial intelligence (AI) is a field of study that focuses on developing intelligent
systems that can perform tasks that typically require human intelligence. Machine Learn-
ing(ML) is a subset of AI that involves designing algorithms and models that enable
computers to learn from and make predictions or decisions based on data without being
explicitly programmed. It empowers machines to improve their performance over time
through experience. Deep Learning is a class of ML techniques that exploit many layers of
non-linear information processing for supervised or unsupervised feature extraction and
transformation and for pattern analysis and classification. It has revolutionized pattern
recognition, introducing solutions that now power a wide range of technologies in many
fields, such as Computer vision (CV), Natural Language Processing (NLP) , and Automatic
Speech Recognition. It allows computers to learn from experience and understand the
world in terms of a hierarchy of concepts, with each concept defined through its relation
to simpler concepts. By gathering knowledge from experience, this approach avoids the
need for human operators to formally specify all the knowledge that the computer needs.
The hierarchy of concepts enables the computer to learn complicated concepts by building
them out of simpler ones.

To successfully apply Deep Learning, a certain level of understanding is required as to
how to cast a problem, the basic mathematics of modeling, and the algorithms for fitting
models to data. This chapter introduces some preliminaries to facilitate the understanding
of deep learning, and covers foundational concepts of DL models. Additionally, it provides
an overview of the most widely utilized frameworks for deep learning.

4

Figure 1.1: Introduction to deep learning [Aggarwal et al., 2022]

1.1 Preliminaries

1.1.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are information processing structures that provide
the (often unknown) connection between input and output data by artificially simulating
the physiological structure and functioning of human brain structures. The natural Neural
Network, instead, consists of a very large number of nerve cells (about ten billion in
humans), called neurons, linked together in a complex network. The intelligent behavior
is the result of extensive interaction between interconnected units [Gallo, 2015].

An Artificial Neural Network can be created by simulating a network of model neurons
in a computer. By applying algorithms that mimic the processes of real neurons, we can
make the network ‘learn’ to solve many types of problems. A model neuron is referred
to as a threshold unit. It receives input from a number of other units or external sources,
weighs each input and adds them up. If the total input is above a threshold, the output of
the unit is one; otherwise it is zero. Therefore, the output changes from 0 to 1 when the
total weighted sum of inputs is equal to the threshold [Krogh, 2008].

Figure 1.2: A basic artificial neuron network [Krogh, 2008].

1.1.2 Activation Functions

Activation functions are what ANN uses to transform an input signal into an output

5

signal, which in turn is fed as input to the next layer in the stack. In ANN, we calculate the
sum of products of inputs and their corresponding weights apply an activation function
to the results to get the output of that particular layer and supply it as the input to the
next one. Mainly there are three types of activation functions.

1. Binary step function: this function depends on a threshold, if the input is greater
than the threshold, then the neuron is activated, otherwise the neuron remains
deactivated, meaning that its output will not be passed on to the next hidden layer.
The binary step function, denoted as H(x), can be defined as:

H(x) =

0 if x < threshold

1 if x ≥ threshold
(1.1)

2. Linear activation function: also known as identity function, this function has a
linear relationship between the input and output of the neuron network, meaning
that the output is a scaled version of the input with no non-linear transformation.
Mathematically, a linear activation function can be represented as:

f(x) = wx+ b (1.2)

3. Non-linear activation functions : non-linear activation functions introduce non-
linearity to the network, therefor they are crucial to the network for their ability
capture non-linear dependencies that may exist between the input and output vari-
ables. Some commonly used non-linear activation functions in neural networks
include:

▶ Sigmoid (Logistic) Function: The sigmoid function maps the input to a range
between 0 and 1, providing a smooth non-linear transformation. It is defined
as:

f(x) =
1

1 + e−x
(1.3)

▶ Hyperbolic Tangent (Tanh) Function: The hyperbolic Tangent Function is sim-
ilar to the sigmoid function but maps the input to a range between -1 and 1. It
is defined as:

f(x) =
ex − e−x

ex + e−x
(1.4)

▶ Rectified Linear Unit (ReLU): The ReLU function is a piecewise linear function
that outputs the input directly if it is positive, and 0 if it is negative. It is defined
as:

f(x) = max(0, x) (1.5)

6

▶ Leaky ReLU : Leaky ReLU is a variation of ReLU activation function that ad-
dresses one of its limitations. While ReLU sets all negative values to zero, the
Leaky ReLU allows a small, non-zero output for negative inputs. This helps
overcome the "dying ReLU" problem, where certain neurons in a network can
become inactive and stop learning during training.The Leaky ReLU function is
defined as follows:

f(x) =

x, if x ≥ 0

αx, if x < 0

(1.6)

1.1.3 Loss functions

A loss function is determined as the difference between the target and predicted output
values. It measures how well the Neural Network models the training data. The aim is to
minimize the average loss between the predicted and target outputs. The hyperparameters
are adjusted by finding the weights (wT) and biases (b), that minimize the value of J

(average loss) as demonstrated in the equation:

J
(
wT , b

)
=

1

m

m∑
i=1

L
(
ŷ(i), y(i)

)
(1.7)

There are two main types of loss functions:

1. Regression Loss Functions: they are used in regression models where the model
predicts the output value through an input value.

▶ Mean Squared Error (MSE): MSE takes the difference between the model’s
predictions and the expected outcome (i.e the ground truth), square it, and
average it out across the dataset. The MSE is formally defined by the following
equation:

MSE =
1

N

N∑
i=1

(
ŷ(i) − y(i)

)2 (1.8)

Where N is the number of samples we are testing against.
One disadvantage of this loss function is that it is very sensitive to outliers, if
a predicted value is significantly greater than or less than its target value, this
will significantly increase the loss.

▶ Mean Absolute Error (MAE): MAE finds the average of the absolute differences
between the target and the predicted outputs.

MAE =
1

N

N∑
i=1

∣∣ŷ(i) − y(i)
∣∣ (1.9)

7

This loss function is used as an alternative to MSE in cases when the training
data has a large number of outliers to mitigate MSE high sensitivity to outliers,
which can dramatically affect the loss because the distance is squared.

▶ Huber loss: this function has the advantages of both MSE and MAE. If the ab-
solute difference between the actual and predicted value is less than or equal to
a threshold value, δ , then MSE is applied. Otherwise, if the error is sufficiently
large, MAE is applied.

Lδ =

 1
N

∑N
i=1

(
ŷ(i) − y(i)

)2
if

∣∣(y(i) − ŷ(i))
∣∣ ≤ δ

1
N

∑N
i=1 δ

∣∣ŷ(i) − y(i) − 1
2
δ
∣∣ if

∣∣(y(i) − ŷ(i))
∣∣ > δ

(1.10)

2. classification loss functions:
▶ Binary Cross-Entropy/Log Loss: in binary classification, there are only two

possible actual outputs,0 or 1. Thus, to accurately determine loss between the
actual and predicted values, it needs to compare the actual value (0 or 1) with
the probability that the input aligns with that category (p(i) = probability that
the category is 1, and 1 — p(i) = probability that the category is 0)

BCE − loss =
1

N

N∑
i=1

−
(
y(i) log(p(i)) + (1− y(i)) log(1− p(i))

)
(1.11)

▶ Categorical Cross-Entropy Loss: in cases where the number of classes is greater
than two, categorical cross-entropy loss function is used.

CCE − loss = − 1

N

N∑
i=1

M∑
j=1

y(i,j) log(p(i,j)) (1.12)

1.1.4 Optimizer

Optimizer is an algorithm that forms the basis on which a machine is able to learn
through its experience. It computes gradients and attempts to minimize the loss function
[Zaheer and Shaziya, 2019]. There are several ways learning is implemented with different
kinds of optimization algorithms, which are described below.

▶ Stochastic Gradient Descent (SGD): The vanilla gradient descent trains the entire
dataset together. Its variant is Stochastic Gradient Descent [Darken et al., 1992] that
performs the training on the individual data element.

▶ Nesterov Momentum: Gradient is computed based on the approximate future po-
sitions of the parameters rather than the current parameters. Nesterov momemtum
is an improvement over momentum which does not determine the future position
of the parameters.

8

▶ Adagrad: This method chooses the learning rate based on the situation. Learning
Rates are adaptive because the actual rate is determined from parameters. A high
gradient for the parameters will have a reduced Learning Rate and parameters with
small gradients will have increased learning rate.

▶ Adadelta: It is an extension of Adagrad. [Zeiler, 2012] presented a modification
of Adagrad into Adadelta. Instead of accumulating the gradients, Adadelta makes
use of some fixed size window and tracks only the available gradients within the
window.

▶ RMSProp: RMSProp changes the Adagrad in a way how the gradient is accumulated.
Gradients are accumulated into an exponentially weighted average. RMSProp dis-
cards the history and maintains only recent gradient information. [Mukkamala and
Hein, 2017] discusses the RMSProp and its variants. They also examines Adagrad
with logarithmic regret bounds.

▶ Adam: It has derived its name from ”adaptive moments”. It is a combination of
RMSProp and Momentum. The update operation considers only the smooth version
of the gradient and also includes a bias correction mechanism. [Kingma and Ba,
2014] discusses the Adam algorithm.

1.1.5 Batch normalization

The change in the distributions of internal nodes of a deep network, in the course of
training, is referred to as Internal Covariate Shift. Eliminating it offers a promise of faster
training. Batch Normalization takes a step towards reducing internal covariate shift, and
in doing so dramatically accelerates the training of Deep Neural Networks. It accomplishes
this via a normalization step that fixes the means and variances of layer inputs. Batch
Normalization also has a beneficial effect on the gradient flow through the network, by
reducing the dependence of gradients on the scale of the parameters or of their initial
values. This allows the use of much higher learning rates without the risk of divergence.
Furthermore, batch normalization regulates the model and reduces the need for Dropout
[Srivastava et al., 2014] and help the Gradient Descent (GD) converge briskly towards the
minima. Finally, Batch Normalization makes it possible to use saturating non-linearities
by preventing the network from getting stuck in the saturated modes [Ioffe and Szegedy,
2015].

1.1.6 Forward propagation and Backpropagation

1. Forward Propagation: The Feed Forward Neural Network (FNN) was the first and
arguably simplest type of Artificial Network devised. Forward propagation is where

9

input data is fed through a network in a forward direction to generate an output.
The data is accepted by hidden layers and processed as per the activation function
and moves to the successive layer. The forward flow of data is designed to avoid
data moving in a circular motion which does not generate an output[Yadav et al.,
2015].

2. Back Propagation: Among many other learning algorithms, "back-propagation al-
gorithm" is the most popular and the mostly used one for the training of feed-forward
neural networks. It is in essence, a means of updating networks synaptic weights [Sa-
zli, 2006]. The back propagation algorithm uses supervised learning, which means
that we provide the algorithm with examples of the inputs and outputs we want the
network to compute, and then the error (difference between actual and predicted
results) is calculated. The idea of the back propagation algorithm is to reduce this
error, until the ANN learns the training data. The training begins with random
weights, and the goal is to adjust them so that the error will be minimal [Dongare
et al., 2012].

Figure 1.3: Backpropagation expletive illustration.

1.1.7 Evaluation Metrics

Various metrics are commonly employed to assess the effectiveness and performance
of models. The following is a selection of widely utilized metrics for evaluating models
that tackle the same issue:

▶ Mean Absolute Error (MAE): MAE measures the average magnitude of the errors
in a set of predictions, without considering their direction. It’s the average over the
test sample of the absolute differences between prediction and actual observation

10

where all individual differences have equal weight.(see equation (1.9)).
▶ Root Mean Square Error (RMSE): RMSE is the square root of MSE. It is commonly

used as a performance measure since it gives equal weights for both early and late
predictions. The equation of the RMSE is given by:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷ(i) − y(i))
2 (1.13)

▶ Score: The scoring function penalizes late prediction more than early prediction, that
is because late prediction usually leads to more severe consequences in many fields
such as aerospace industries. The scoring function employed by the International
Conference on Prognostic and Health Management Data Challenge is given by [Li
et al., 2018]:

S =
N∑
i=1

s(i), where s(i) =

e−
ŷ(i)−y(i)

13 − 1 for ŷ(i) − y(i) < 0

e−
ŷ(i)−y(i)

10 − 1 for ŷ(i) − y(i) ≥ 0
(1.14)

▶ R-squared (R2): This function measures the coefficient of determination that can
take values in the range (-∞, 1] according to the mutual relation between the ground
truth and the prediction model. It provides an indication of the goodness of fit and
therefore a measure of how likely the invisible samples are to be predicted by the
model [Chicco et al., 2021]. It is represented by:

R2(y, ȳ) = 1−
∑N

i=1

(
y(i) − ŷ(i)

)2∑N
i=1 (y

(i)2 − ȳ)
2 , where ȳ = 1

N

∑N
i=1 y

(i) (1.15)

These metrics provide different perspectives on the performance of a regression model,
and the choice of the most appropriate metric depends on the specific problem and
requirements. Additionally, it is worth mentioning that these metrics are not exhaustive.

1.1.8 Hyper-parameters

They are parameters whose values are set before starting the model training process
such as Gradient Descent, Learning Rate (LR), epochs, Batch-size. Choosing appropriate
values for hyper-parameters to tune DNN is difficult because they affect different aspects
of the network: structure, optimization process, data processing, learning process con-
trol, how well our model performs and how accurate it is, by directly influencing other
parameters of the model such as weights [Lakhmiri et al., 2021].

1. Gradient Descent: GD is one of the most algorithms of optimizing Neural Networks.
It is used to find the values of the parameters (coefficients) of a function that decrease

11

the loss function as much as possible. For this it needs to compute the objective
function gradient by applying a first-order derivative with respect to the network
parameters. Next, the parameter is updated in the reverse direction of the gradient
to reduce the error [Haji and Abdulazeez, 2021]. There are three types of Gradient
Descent learning algorithms:

▶ Batch Gradient Descent:
θ = θ − η.∇θJ(θ) (1.16)

Here, θ represents the model parameters, η is the learning rate, and ∇θJ(θ) is the
gradient of the loss function J.

▶ Stochastic Gradient Descent:

θ = θ − η.∇θJ
(
θ;x(i); y(i)

)
(1.17)

Where x(i) and y(i) represent the input features and corresponding target labels of the
i-th training example. The gradient ∇θJ

(
θ;x(i); y(i)

)
is computed by evaluating the loss

function J on the single training sample (x(i),y(i)).
▶ Mini-batch Gradient Descent

θ = θ − η.∇θJ
(
θ;x(i:i+n); y(i:i+n)

)
(1.18)

Where x(i:i+n) and y(i:i+n) represent a mini-batch of training set, consisting of n con-
secutive samples starting from the i-th index. The gradient ∇θJ

(
θ;x(i:i+n); y(i:i+n)

)
is calculated by evaluating the loss function J on this mini-batch.

Figure 1.4: Gradient Descent Algorithm.

2. Learning Rate: The Learning Rate may be the most important hyper-parameter
when configuring a Neural Network.The learning rate is multiplied by the gradients
to determine the step size for weight updates Which means it controls the rate or
speed at which the model learns, Choosing the Learning Rate is challenging as it

12

may have a significant impact on the convergence of the GD algorithms. There is a
trade-off between rate of convergence and overshoot when determining the rate of
learning, If the Learning Rate is too high, we can go beyond the threshold and start
bouncing without meeting the minimum, On the other hand, if the LR is too poor,
training may take a long time [Haji and Abdulazeez, 2021].

3. Number of iterations or Epochs: We can define an Epoch as the number of passages
of a training data-set by an algorithm, one pass is equivalent to one round trip.
An epoch is made up of an aggregation of “Batches” or “lots” of data and iterations
where data-sets are generally broken down into batches, especially when the volume
of data is massive because processing it in one epoch can be computationally chal-
lenging. The number of epochs can reach several thousand, because the procedure
repeats itself until the error rate of the model is sufficiently reduced.

1.2 Basic Deep Learning Architectures

Deep learning architecture refers to the design and arrangement of deep neural net-
works, which are composed of multiple layers of interconnected nodes called neurons.
These networks are designed to process data in a hierarchical manner, where each layer
extracts increasingly abstract features from the input data. In the following, we highlight
some of the most common deep learning architectures.

1.2.1 Convolutional Neural Network

CNN is one of the most popular models of deep neural networks inspired by the
structure of the brain, just like neurons in the brain, and has been widely applied in a
range of different fields, including computer vision, speech processing, face recognition,
. . . etc. It is a special class of forward neural networks. The artificial neurons or nodes in
CNNs have the ability to automatically learn features from the input data and get rid of
manual extraction, so they take the input, process it and send the result as output [Patel
and Patel, 2018]. This process uses a very small number of parameters and only small
areas of the scene are processed by these cells rather than the entire scene, which simplifies
the training process and speeds up the network [Alzubaidi et al., 2021].

The CNN architecture (figure 1.5) consists of a number of layers (or so-called multi-
building blocks). Each layer in the CNN architecture, including its function, is described
in detail below.

13

Figure 1.5: Architecture of the CNN.

▶ The Convolution layer is the initial layer in a neural network. Its purpose is to analyze
input images and identify specific features. It performs a mathematical operation
that involves taking an input image matrix and a filter or kernel. As a result, this
layer produces a set of feature maps, which represent the detected features within
the input images [Narejo et al., 2020].

▶ The Pooling layer, which is usually applied between two convolution layers. It
takes the feature maps generated by the previous convolutional layer as input and
reduces their size and dimensionality while preserving their most essential char-
acteristics. Two commonly used pooling operations are max-pooling and average
pooling. Max-pooling selects the largest element from the rectified feature map,
while average pooling calculates the average value within the filter window. These
pooling operations help reduce the size of the feature maps while retaining impor-
tant information. The output of the pooling layer consists of the same number of
feature maps as the input, but in a considerably compressed form.

▶ The activation layer, also known as the non-linearity layer, sets negative input values
to zero. This layer introduces non-linearity to the model, enabling it to capture
complex relationships and dependencies in the data [Narejo et al., 2020].

▶ The fully-connected layer, it is often located at the end of each CNN structure. Within
this layer, each neuron is connected to all neurons in the previous layer, which is
called the full connection (FC) approach. The inputs of the fully-connected layer
come from the last pooling or CNN layer. This input is in the form of a vector, which
is created from the feature maps after flattening. The output of the fully-connected
layer represents the final CNN output [Alzubaidi et al., 2021].

14

1.2.2 LSTM

LSTM networks are a type of Recurrent Neural Networks (RNNs) that address the
challenge of long-term dependencies. Introduced by Hochreiter and Schmidhuber in
1997 [Hochreiter and Schmidhuber, 1997], LSTMs effectively handle vanishing and ex-
ploding gradients in RNNs. They have the inherent ability to retain information over
long sequences, making them well-suited for processing, predicting, and classifying time-
series data. LSTM networks consist of an input layer, memory cells, and an output layer.
The key feature of LSTM networks lies in the hidden layer, which contains memory cells
[Hu et al., 2018]. Each memory cell is equipped with three gates that regulate and modify
its cell state:

▶ The forget gate defines what information is removed from the cell state.
▶ The input gate specifies what information is added to the cell state
▶ The output gate specifies what information from the cell state is used.

ft = σ(Wf · [ht−1, xt] + bf) (1.19)

it = σ(Wi · [ht−1, xt] + bi) (1.20)

c̃t = tanh(Wc · [ht−1, xt] + bc) (1.21)

ct = ft ⊙ ct−1 + it ⊙ c̃t (1.22)

ot = σ(Wo · [ht−1, xt] + bo) (1.23)

ht = ot ⊙ tanh(ct) (1.24)

Figure 1.6: The architecture of LSTM memory block.

1.2.3 GRU

A Gated Recurrent Unit is a type of gating mechanism used in RNN. It shares sim-
ilarities with LSTM but offers faster computation due to its simpler internal structure.

15

GRU is easier to train compared to LSTM as it involves fewer computations [Haji and
Abdulazeez, 2021]. The LSTM’s three gates are replaced by two: the reset gate and the
update gate.The update gate regulates the flow of information into the memory, while
the reset gate controls the flow of information out of the memory. These gates determine
which information is retained and passed on to the output. Through training, the update
gate can preserve relevant past information, while the reset gate can discard irrelevant
information, enhancing the model’s predictive capabilities.

Figure 1.7: The architecture of Gated Recurrent Unit.

zt = σ(Wz · [ht−1, xt]) (1.25)

rt = σ(Wr · [ht−1, xt]) (1.26)

h̃t = tanh(Wh · [rt ⊙ ht−1, xt]) (1.27)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (1.28)

1.3 Deep Learning Frameworks

Deep learning frameworks are software libraries that provide a high-level interface
and tools for building and training deep neural networks. These frameworks offer pre-
defined functions and optimized implementations of complex operations, making it easier
to design, train, and deploy deep learning models. Below are some popular deep learning
frameworks:

1.3.1 TensorFlow

TensorFlow is an open source software library developed by researchers and engineers

16

from the Google Brain team within the Google artificial intelligence organization. It comes
with strong support for machine learning and deep learning, and its flexible numerical
computation core is used across many other scientific fields. It is a numerical library
for dataflow programming that provides the basis for deep learning research and de-
velopment. TensorFlow programming interfaces include APIs for Python and C++, and
developments for Java. [Nguyen et al., 2019].

1.3.2 Keras

Keras is an open-source deep-learning framework for Python that provides a convenient
way to define and train almost any kind of deep-learning model. This tool can work on
TensorFlow, Theano, Microsoft Cognitive Toolkit, and PlaidML. The USP (Unique Selling
Proposition) of Keras is its speed; it comes with built-in support for data parallelism, and
thus, it can handle massive volumes of data while speeding up training time for models.
Since it’s written in Python, it’s incredibly easy to use and extensible. Additionally, it is
excellent for beginners who are just starting their journey in this field, and it allows the
same code to run seamlessly on CPU or GPU [Chollet, 2021].

Apart from the mentioned frameworks, there are several other popular options avail-
able for deep learning, such as PyTorch, Theano, and Caffe.

Conclusion

In this chapter, we explored the general concept of Deep Learning and its fundamental
principles. Additionally, we covered some widely employed approaches in deep learning,
namely Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and
Gated Recurrent Unit (GRU). These approaches are extensively utilized in various domains
and have proven to be successful in addressing complex problems.

In the next chapter, we will go through the concept of maintenance, focusing on the
notion of Remaining Useful Life (RUL). We will explore several approaches employed for
estimating RUL, including deep-learning-based approaches.

17

An Overview On Remaining
Useful Life

Chapter

2

Introduction

Maintenance and prognostics are essential in various industries, including aerospace,
manufacturing, automotive, and heavy industries with high-risk engineering systems. An
unexpected malfunction can lead to significant financial loss or even human casualties.
Therefore, it is crucial to accurately evaluate the equipment’s operational condition and
estimate its Remaining Useful Life. This information can assist operators in making critical
decisions, enabling timely maintenance before any irreversible damage occurs[Chen et al.,
2018; Yu et al., 2019].

Prognostic and health management technologies, also known as Condition-Based
Maintenance, are showing promise for high-risk industries. Remaining useful life es-
timation of engineering systems is the most important task within the field of PHM
[Wang et al., 2008; Khelif et al., 2014], using physics-based, data-driven, or hybrid meth-
ods. Data-driven methods are proving to be the most reliable for RUL estimation as they
are easier to implement and rely on routinely collected sensor data.

This chapter first discusses the concept of maintenance and its various types, followed
by the concept of "remaining useful life" and its modeling methods.

2.1 Maintenance Definition

Maintenance corresponds to all the technical, administrative and management actions
to be carried out to maintain an efficient information technology infrastructure. Whether
you are an individual or a professional, it is important to regularly check the status of your
devices. Maintenance meets several objectives: preserve the performance of hardware
and software, update the computer system, maintain and correct any problems with the
computer equipment and restore it to a state in which it can perform the required function

18

[Yende, 2018]. Maintenance tasks vary by work environment which includes, for example,
visual inspection, test, measurement, change of consumables (greasing, lubrication, oil
filters), adjustment, repair, tightening of bolts, cleaning, fault detection, etc [Mosallam,
2014].

2.2 Maintenance Types

In the context of maintenance, two main types can be distinguished: corrective mainte-
nance and preventive maintenance, depending on the moment of intervention in relation
to the failure. The first type of maintenance is applied after the occurrence of the failure,
while the second type applies before the latter [Nihal, 2022].

Figure 2.1: Predictive maintenance.

2.2.1 Corrective maintenance

Corrective maintenance corresponds to an operation undertaken following a break-
down, a disaster, or a hazard. Its objective is to restore the good working order of the
machines by troubleshooting, repairing, or replacing defective parts[Amira et al., 2019].
This maintenance includes two types:

▶ Palliative maintenance: avoids a complete stoppage of production by temporarily
returning the machine or tool to its original condition pending repair or replacement.

▶ Curative maintenance: This type of maintenance fixes the causes and consequences
of a breakdown. This is an in-depth procedure that works in the long run, often
by replacing the defective part with a new one. Then, the equipment will resume
normal production.

2.2.2 Preventive maintenance

This type of maintenance is carried out at predetermined intervals or according to
prescribed criteria and intended to reduce the probability of failure or the degradation

19

of the functioning of an asset. Preventive maintenance is therefore, as its name suggests,
prevents total failure through the regular maintenance of a machine or asset. It consists
of carrying out check-ups according to established standards or in accordance with the
manufacturer’s instructions, but also according to human experience and the history of
interventions carried out on the asset [Hao et al., 2010].

1. Systematic maintenance: When preventive maintenance is performed at predeter-
mined intervals, we are talking about systematic maintenance, the maintenance op-
eration is carried out in accordance with a timetable and no intervention takes place
before the predetermined deadline.Optimization of systematic preventive mainte-
nance involves determining the most appropriate frequency for performing mainte-
nance operations based on various factors such as time, number of operating cycles,
number of parts produced, and other relevant parameters.[Deloux, 2008].

2. Condition Based Maintenance: CBM is a maintenance strategy that monitors the
actual condition of an asset to decide what maintenance needs to be done. CBM
dictates that maintenance should only be performed when certain indicators show
signs of decreasing performance or upcoming failure. The heart of CBM is the Con-
dition Monitoring (CM) and evolution of significant parameters of the degradation
or drop in performance of an entity. The significant degradation parameters can
either be measurements of the physical characteristics of the system (thickness of
a material, degree of erosion, temperature, pressure, . . .), or information about the
Remaining useful life (this is called predictive maintenance) [Deloux, 2008].
Predictive maintenance is a subset of Condition-Based Maintenance that uses ad-
vanced technologies, data analysis, and predictive algorithms to forecast equipment
failures and decide which maintenance activity to perform. Predictive analysis re-
lies on data collected from measuring devices/sensors connected to machines and
tools, such as vibration data, thermal images, ultrasound data, etc. The predictive
model processes the information through predictive algorithms, detects trends, and
determines when equipment will need to be repaired or retired Instead of operating
a part of the equipment or a component in a state of failure or replacing them when
they still have a useful life, This would help companies to improve their strategies
by performing maintenance activities only when absolutely necessary [Ran et al.,
2019].

20

Figure 2.2: Predictive maintenance.

2.3 Remaining Useful Life of an equipment

The Remaining Useful Life (RUL) is a subjective estimate of the remaining time that
an item, component, or system can function according to its intended purpose before
requiring maintenance or replacement. RUL is calculated by measuring the time between
the current moment, after detecting degradation, and when the degradation reaches the
failure threshold.

The remaining useful life is estimated by observing similar items, components, or
systems, or by using average estimates or a combination thereof. For example, if a PVC
membrane roof was installed about seven years ago and poorly maintained, its remaining
useful life might be around ten years.

The Remaining Useful Life of building components and systems is also known as Prop-
erty Condition Assessment. Accurately predicting RUL allows maintenance to be planned
in advance, reducing costs and time by avoiding unnecessary maintenance. Figure 2.3
illustrates the general concept of RUL by showing the evolution of the deterioration of a
given system. In this case, RUL is the time between the current time, corresponding to
condition A, and the time when a maximum acceptable condition of deterioration B is
reached.

The maximum acceptable condition of deterioration B can correspond to the moment
of failure or to a predefined threshold in a lower value. Therefore, useful life can be
defined from the beginning of life to failure or until the time of condition B. Proper RUL
prediction is useful in carrying out maintenance from condition A to B, saving resources
and improving processes [Obando, 2018].

21

Figure 2.3: The concept of remaining useful life (RUL) [Sikorska et al., 2011].

2.4 Modeling Methods of RUL Estimation

Figure 2.4: Modeling methods of RUL estimation.

2.4.1 Physics-based models

Failure physics-based approaches or physics-based models [Cubillo et al., 2016; Liu,
2020] create analytical models that are directly linked to the physical processes that af-
fect the health of a component. These approaches require knowledge of physical laws
such as mechanics, chemistry, electricity, and hydraulics. The physical model is usually
described using dynamical systems such as differential equations, non-linear equations,
state representations, etc.

The principle of prognosis based on a physical model can be seen in figure (2.5). In this
approach, the behavior of the system is represented by an analytical model. A coherence

22

test is carried out by comparing the sensor data from the real system with the outputs of
the analytical model. The residues generated during this test are then evaluated. If there
is a malfunction, the residuals will exceed a fault detection threshold.

Projections of the future behavior and degradation of the system are used to estimate
the remaining time before failure. Physical models are used to address problems such as
material wear, crack growth, fatigue-related breakages, or corrosion.

Figure 2.5: Flow chart of physics-based models approach

2.4.2 Data-driven models

Data-driven approaches , data-driven [Khelif et al., 2016; Wang et al., 2019] seek to
extract from a history of monitoring data models of the evolution of the functioning of the
monitored system, going as far as its degradation. These approaches have two phases. An
offline phase dedicated to understanding and learning the behavior of degradation, and
an online phase that estimates the current state of the system and predicts its functioning
time before failure. Data-driven models can be classified into two categories: statistical
approaches and artificial intelligence based approaches.

1. Statistical approaches:

Figure 2.6: Statistical approaches classification.

▶ State-space models: State-space models are a powerful framework for modeling
and predicting time series data, including the prediction of RUL, they combine
two key components: a dynamic system model and an observation model.The
dynamic system model describes the underlying behavior of the system over time.

23

It typically consists of a state transition equation that captures the evolution of
the system’s latent or hidden states, and a process noise term that accounts for
the uncertainties in the state evolution. Two of the commonly used techniques for
stat-space models are:

Hidden Markov Model (HMM): HMM is a statistical model for sequential data,
with hidden states representing unobservable sequences and observations related
to states through probability distributions. HMMs are used in speech and hand-
writing recognition [Khorasgani et al., 2016] [Zhao et al., 2017] and degradation
modeling, predicting the Remaining Useful Life with meaningful states [Dong and
He, 2007; Son et al., 2016; Alaswad and Xiang, 2017].

Bayesian networks: Bayesian networks (BN) are probabilistic graphical models
that allow for integrating historical data and expert knowledge to overcome the
uncertain, incomplete, and even conflicting properties of the data [Nguyen et al.,
2023].Bayesian networks are used in aircraft brake wear prediction, RUL estimation,
modeling degradation and failures in complex systems, and capturing uncertainty
in instrument systems like helicopter stability augmentation.

▶ Auto-regressive models:
auto-regressive moving average models (ARMA), integrated auto-regressive mov-
ing average models (ARIMA) and Auto-Regressive Moving Average with Exoge-
nous (ARMAX) are the reference methods in modelling temporal series . The
ARMA and ARMAX models are only used for stationary data. They are improved
by applying an integration operation in the ARIMA model. Regressive models do
not require a degradation history and must be evaluated recursively until a certain
threshold is reached, which generates an accumulation of systematic error and
deteriorates the performance of the predictor.

Figure 2.7: Flowchart of auto-regressive approaches for RUL prediction.

24

2. Artificial intelligence or machine learning:

Figure 2.8: Machine learning approaches.

▶ Neural Networks (NN): Machine learning methods have been studied for RUL pre-
diction, NN received a lot of attention given their ability to approximate functions
directly from raw data [Li et al., 2018]. In fact, ANNs are known for their ability
to model complex, multidimensional, and nonlinear systems with no need for a
physical understanding of system behavior. An ANN is a nonlinear approximation
function with multiple inputs and outputs and can be used for different purposes
including prognosis. According to the inputs of the ANN model, the latter has the
flexibility to perform different tasks, such as the prediction of the time remaining
before failure for example [Khelif, 2015]. Recently, Deep NN methods have been
proposed to predict problems containing large amounts of temporal input data
[da Costa et al., 2020].

▶ Support Vector Machines: Support vector machines (SVM) were developed by
Vapnick and his colleagues. SVMs are the basis of a learning system that represents
a space of input features in a higher-dimensional space. This is called the kernel
trick and it gives SVMs the ability to process nonlinear data. These methods
have a good generalization and have two types of application: support vector
classification, used to solve diagnostic problems, and support vector regression,
used to solve the prognostic problems.

▶ Instance-based methods: Instance-based approaches are based on a data-set, on
which learning techniques are applied. They are based on the principle: “the
experiences acquired during the resolution of a problem can be used to solve
similar cases”. An algorithm often used for this type of approach is the k-nearest
neighbors. An instance is generally represented by a vector in an n-dimensional
Euclidean space and the objective is to find similar instances. The advantage of
these methods is incremental learning. When a problem is successfully solved, the
experience is kept in order to solve new similar problems. Instance-based methods
are part of case-based reasoning (RaPC) which is a paradigm of reasoning by
analogy. New problems are solved based on specific knowledge gained from

25

solving old problems. RaPC is based on the philosophy: “Similar cases produce
similar results”.

Figure 2.9: Machine learning approaches workflow.

2.4.3 Hybrid models

By combining model-based and data-driven approaches, hybrid approaches aim to
leverage the advantages of both and mitigate their drawbacks [Baraldi et al., 2013]. For
example, the recursive Bayesian estimator is an important approach for integrating system
models with sensor data, enabling so-called hybrid models. Recursive Bayesian estimators
typically involve two common procedures at each iteration: prediction and update. Two
significant variants of the Bayesian estimator are the Kalman filter and the particle filter.
The Kalman filter is suitable for linear state-space models with Gaussian noise, while the
particle filter can be used for nonlinear models with non-Gaussian noise [Khelif, 2015].

2.5 Deep Learning Techniques For RUL Estimation-
Related Works-

Several Deep Learning techniques have been proposed and have shown promising
results in RUL estimation, and further research in this area is going to improve the
performance and efficiency of these models. The following are some related works in
which the CMAPSS data-set was used:

▶ [Sateesh Babu et al., 2016] proposed a CNN based regression model for estimating
the Remaining Useful Life. The architecture of the proposed CNN-based regression
model consists of several convolutional layers followed by fully connected layers.
The authors used a 1D CNN architecture that takes the time-series input data and

26

extracts relevant features from it. The extracted features are then fed into fully
connected layers that predict the RUL.

▶ [Li et al., 2018] suggested a Deep Convolutional Neural Network (DCNN) for pre-
dicting the Remaining Useful Life (RUL). The authors argued that their model has
the potential to improve RUL estimation in prognostics, especially when dealing
with complex and high-dimensional data. The proposed model consists of an input
layer, four stacked convolutional layers with the same configuration to extract fea-
tures, and another convolutional layer with one filter to merge the previous feature
maps into a unique one. The feature map is then flattened and connected to a dense
layer, followed by one neuron for RUL estimation.

▶ [Ayodeji et al., 2021] investigated the potential benefits of incorporating soft Self-
Attention Mechanisms into a multi-head model for analyzing the CMAPSS dataset
subsets FD001 and FD003. The proposed model was a fully connected neural net-
work (FNN) which was evaluated in comparison to other models such as simple
recurrent neural network (SRNN), GRU, LSTM, CNN and other variants of those
models, before incorporating Self-Attention and observing its effect on each model.

▶ [Azyus et al., 2022] experimented with the GRU architecture by building three GRU
architectures and testing them on the CMAPSS dataset. The GRU architectures have
different numbers of GRU layers expending from two to four layers after the input
layer, followed by a Fully Connected layer and an output layer. ([Azyus et al., 2022])
also stated some of the architecture configurations such as a batch size of 512, a
learning rate with Adam optimizer of 0.001, and a total of 200 epochs.

Conclusion

This chapter reviewed two main parts: the first part explains what maintenance is,
focusing on predictive and Condition-Based Maintenance, while detailing the types of
each and citing its convenience. The second part discussed the concept of Remaining
Useful Life (RUL) passing through several approaches used for its estimation along with
some similar ideas and related works.

In the next chapter, we will explain our proposed models, the steps we followed to
build them, as well as display and discuss the obtained results.

27

Contribution: Development of a
Hybrid Deep Learning Model for

RUL Estimation

Chapter

3

Introduction

In this chapter, we will address the task of estimating the RUL for airplane turbofan
engines using a data-driven approach, specifically Deep Learning. First, we will outline
the common steps used for building a model, and then we will briefly introduce the
C-MAPSS dataset used for this purpose. To enhance the predictive performance of the
proposed models, two techniques will be evaluated, specifically the Attention Mechanism
and Multi-head architecture. Finally, we will discuss the results obtained and compare
them to some of the state-of-the-art methods mentioned in the previous chapter.

3.1 Methodology: Common Steps for Building a Model
for a Regression Problem

Developing a Deep Neural Network for a regression problem 1 is an iterative process.
The following stages must be revisited to fine-tune both the model parameters and its
architecture to enhance its performance.

▶ Loading the Dataset: First, we will load the C-MAPSS dataset. It is divided into
four subsets (FD001, FD002, FD003, and FD004), with each subset containing data
for training, testing, and RUL. All subsets have the same number of features (25
columns) but differ in the number of samples collected under various operating
conditions and fault modes, as illustrated in Table 3.2. For more details about the
dataset, please refer to Section 3.3.

1Remaining Useful Life (RUL) can be defined as a regression problem since it provides a numerical
value (the output) representing the number of cycles the engine will last in service before it fails.

28

▶ Data Normalization: Data normalization is an important step that directly impacts
the performance and convergence speed of Deep Learning models. Its purpose is to
standardize all input features to a common scale without distorting the differences
in the value ranges.

▶ Neural Network Architecture Design: Neural Network architecture refers to the
structure and organization of Artificial Neural Networks. The process of selecting
and organizing the layers connections and parameters of the network to effectively
address a given problem requires careful consideration of factors such as the nature
of the input data, task complexity, and available computational resources. When
constructing a Neural NetworK, it is essential to identify the input and output layers,
any hidden layers, the number of neurons, and the activation functions. To ensure
an effective architecture, hyperparameters such as the Learning Rate, number of
Epochs, validation split, and Batch size must be adjusted to improve results.

▶ Training the Model: The objective of training the model is to learn the relationship
between the training data and labels and then store this knowledge. The compilation
step involves configuring the model with specific settings before training can com-
mence. This includes defining the optimizer, loss function, and evaluation metrics
used during training to assess the model’s performance (as discussed in Chapter 1).
During the training phase, the provided input sequences are divided into a training
set and a validation set. The training set undergoes a series of computations to
generate predictions over a predefined number of Epochs. After each epoch, the
model’s performance is evaluated on the validation set to identify potential issues
like overfitting or convergence problems. Once the model is compiled and trained,
it becomes important to save it for future use or deployment. Saving the trained
model entails storing its architecture, trained weights, optimizer state, and any ad-
ditional configurations. This allows the model to be loaded and used on the testing
set without the need for re-training.

▶ Model Evaluation and Tuning: By adjusting hyperparameters such as the Learning
Rate and Batch size, the model’s performance can be enhanced to achieve improved
accuracy or other desired metrics. Tuning helps identify the optimal configuration
that maximizes the model’s predictive capability while avoiding issues of under-
fitting and overfitting. Once the model has been tuned, it should be evaluated to
verify that the improvements made during tuning have indeed resulted in enhanced
performance. Model evaluation allows us to compare different regression models
(or algorithms targeting the same problem), enabling us to determine which one
offers the best solution for that problem.

▶ Predicting New Data: Once the model is trained and validated, it becomes capable

29

of predicting labels for new, unseen data (test data), which differs from the data used
during the training phase. The accuracy of these predictions on the test data relies
heavily on the generalization ability of the trained model.

3.2 Motivation

Hybrid models, which combine multiple types of Deep Learning architectures, have
gained significant attention and popularity due to their ability to leverage the strengths
of different types of Neural Networks and overcome their individual limitations, leading
to more reliable and robust predictions. This can be particularly useful in complex and
uncertain domains where a single model may struggle to capture the full complexity of the
data. In recent years, there has been growing interest in utilizing two promising architec-
tural advancements, namely Multi-head models and Attention Mechanisms, to enhance
the predictive capabilities of Deep Learning models. Unlike traditional approaches, the
Multi-head approach employs independent "heads" to process sensor data individually.
This approach offers notable benefits such as improved feature extraction. Addition-
ally, Attention Mechanisms enable Deep Learning models to automatically identify and
prioritize important features while suppressing less influential ones. By incorporating
Attention Mechanisms, information processing in DL models is likely to become more
efficient and accurate, leading to a potential improvement in model performance. Despite
the significance of these advancements, comprehensive investigations into the individ-
ual effects of these mechanisms on Deep Learning models, particularly in the context of
Remaining Useful Life predictions, remain limited. On the other hand, to the best of
our current knowledge, only a few studies have employed the CNN-GRU architecture for
RUL prediction. The dominant choice in the literature has been the CNN-LSTM hybrid
model. Moreover, not all research papers provide comprehensive architectural details
for their proposed models. Motivated by the aforementioned considerations, we propose
two models: a CNN-GRU model and a straightforward FNN model. Subsequently, we
analyze the impact of the previously mentioned techniques on their performance.

3.3 Data Description - C-MAPSS Dataset -

The dataset used in this study was generated with the Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS). It provides simulated run-to-failure trajecto-
ries of a small fleet of large turbofan engines, with the components depicted in Figure
3.1.

30

Figure 3.1: Diagram of turbofan engine modules [Hong et al., 2020].

The C-MAPSS dataset comprises data collected from twenty-one sensors that measure
engine status and information from three operating settings that significantly impact
engine performance. It is important to note that the data is affected by sensor noise. Table
3.1 displays the list and physical meanings of C-MAPSS dataset parameters and margins
that were used for health index calculation only and were not available explicitly. It should
be noted that we treated the previous sensors as a series of numbers from 1 to 21 without
going into their specific details.

As mentioned earlier, the C-MAPSS dataset consists of four subsets (see Table 3.2)
configured with variations in the number of engines, operating conditions, and failure
types. Each subset comprises training data, test data, and its respective Remaining Useful
Life. In practical scenarios, domain experts and decision-makers can utilize sensor data
to monitor the condition of turbofan engines, detect and address malfunctions, and, most
importantly, predict performance degradation and RUL.

3.4 Data Pre-processing

Data pre-processing is a crucial step in building a model and has a significant impact
on its performance. We start by reading the files containing our data. As previously
mentioned, each subset of the C-MAPSS dataset comprises three files: "train" for training,
"test" for testing, and "RUL," which contains the corresponding labels for the test data.
Subsequently, we calculate the RUL values for each train and test subset. Two methods

31

Sensor Number Symbol Description Unit

Parameters available to participants as sensor data
1 T2 Total temperature at fan inlet °R
2 T24 Total temperature at LPC outlet °R
3 T30 Total temperature at HPC outlet °R
4 T50 Total temperature at LPT outlet °R
5 P2 Pressure at fan inlet psia
6 P15 Total pressure in bypass-duct psia
7 P30 Total pressure at HPC outlet psia
8 Nf Physical fan speed rpm
9 Nc Physical core speed (P50/P2) rpm
10 Epr Engine pressure ratio (P50/P2) –
11 Ps30 Static pressure at HPC outlet psia
12 phi Ratio of fuel flow to Ps30 pps/psi
13 NRf Corrected fan speed rpm
14 NRc Corrected core speed rpm
15 BPR Bypass Ratio –
16 farB Burner fuel-air ratio –
17 htBleed Bleed Enthalpy –
18 Nf_dmd Demanded fan speed rpm
19 PCNfR_dmd Demanded corrected fan speed rpm
20 W31 HPT coolant bleed lbm/s
21 W32 LPT coolant bleed lbm/s

Parameters for calculating the Health Index
1 T48 (EGT) Total temperature at HPT outlet °R
2 SmFan Fan stall margin –
3 SmLPC LPC stall margin –
4 SmHPC HPC stall margin –

Table 3.1: C-MAPSS outputs to measure system response. [Saxena et al., 2008].

Subset ID FD001 FD002 FD003 FD004
Number of engines 100 260 100 249

Number of training samples 20,631 53,579 24,270 61,249
Number of test samples 100 259 100 248

Number of the data column 26 26 26 26
Average life span (cycles) 206 206 247 245

Operating conditions 1 6 1 6
Fault conditions 1 1 2 2

Table 3.2: Summary of C-MAPSS Dataset Subset [Saxena et al., 2008].

32

can be employed for this task (see Figure 3.2)2:

▶ Linear Degradation: in this method, we assume that the degradation state begins
with the first cycle. For example, in the case of the first engine of the FD001 train,
which has 192 cycles, this implies that the degradation state starts with the first cycle,
leaving a total of 191 cycles remaining until failure.

▶ Piecewise Linear Degradation: this method proposes assigning a fixed number,
referred to as ’early-RUL’, to the RUL so that the degradation state does not commence
from the first cycle but rather starts when RUL values reach ’early-RUL’.

Figure 3.2: Visual Comparison of Linear Degradation vs. Piecewise Linear Degradation.

The final step is data normalization, a fundamental pre-processing technique em-
ployed to standardize and scale data before inputting it into the model. As previously
mentioned (see Section 3.1), the objective of data normalization is to ensure that all fea-
tures share a consistent scale and distribution, ultimately enhancing model performance
and convergence. Various methods are commonly used for data normalization, with
Min-Max Scaling being one of them, which we have adopted. This technique scales the
data to a fixed range, typically between 0 and 1 [Eesa and Arabo, 2017]. It computes the
minimum and maximum values within the dataset and scales each data point accordingly,
as indicated in Equation 3.1.

Xscaled =
X −Xmin

Xmax −Xmin
(3.1)

2https://github.com/biswajitsahoo1111/rul_codes_open/blob/master/notebooks/cmapss_
notebooks/CMAPSS_data_description_and_preprocessing.ipynb

33

https://github.com/biswajitsahoo1111/rul_codes_open/blob/master/notebooks/cmapss_notebooks/CMAPSS_data_description_and_preprocessing.ipynb
https://github.com/biswajitsahoo1111/rul_codes_open/blob/master/notebooks/cmapss_notebooks/CMAPSS_data_description_and_preprocessing.ipynb

Where X represents the original data, and Xscaled represents the normalized value.
Xmax and Xmin respectively denote the maximum and minimum values of the original
sensor measurements [Li et al., 2018].

3.5 Contributions

3.5.1 The first proposed model: CNN-GRU hybrid

The first proposed model for RUL prediction is a CNN-GRU hybrid model. The idea
behind this combination is to employ CNN ability to automatically extract features from
the input data, and GRU ability to capture long-term dependencies in sequential data.
While GRU and LSTM are both Recurrent Neural Network architectures known for han-
dling long-term dependencies in sequential data, GRU has a simpler structure and faster
computations, making it easier to train and more computationally efficient than LSTM.
GRU’s simplicity leads to faster inference, lower memory requirements, and reduced risk
of over-fitting. For these reasons, we chose to use GRU instead of LSTM.
The architecture of the model is sequential (i.e the layers are arranged sequentially, one
after another). It consists of three CNN layers with the identical configurations for feature
extraction, followed by a Dropout layer to prevent over-fitting. Then two GRU layers are
added to handle long-term dependencies, followed by another Dropout layer, and final,
a Fully-Connected layer. A detailed description of this architecture is presented in Table
3.3. The results are displayed in Table 3.6.

3.5.2 The second proposed model: FNN model

The second model we proposed in this work is the FNN model. The fundamental
architecture of FNNs consists of multiple layers of interconnected neurons in which in-
formation flows in a forward direction from the input layer through the hidden layers
to the output layer. In the FNN sequential model, we used two dense layers that are
responsible for transforming the input data by applying a linear transformation, followed
by a nonlinear activation function. Each neuron in the dense layer takes the output from
all neurons in the previous layer as input and produces an output value. To mitigate the
risk of overfitting, we added a dropout layer after the first dense layer. This description is
better presented in Table 3.4. The results are displayed in Table (3.6).

It is important to note that during the pre-processing phase of both models construc-
tion, the linear degradation method was employed.

34

ConfigurationsHyperparameter
FD001 FD002 FD003 FD004

CNN1 Filters = 64, kernels = 4
Leaky-ReLU α = 0.001

MaxPooling Pool size = 2
CNN2 Filters = 64, kernels = 4, activation = ReLU

Leaky-ReLU α = 0.001

CNN3 Filters = 64, kernels = 4, activation = ReLU
Leaky-ReLU α = 0.001

Dropout Rate = 0.2
GRU1 Units = 128, Activation = LeakyReLU(α = 0.001)
GRU2 Units = 80, Activation = LeakyReLU(α = 0.001)

Dropout Rate = 0.2
Flatten /
Dense Units = 1, Activation = Linear

Optimizer Adam(learning rate = 3× 10−4)
Seq-length 90

Epochs 100
Batch size 512
Split-val 0.05

Table 3.3: Hyper-parameters and configurations of the CNN-GRU hybrid model.

ConfigurationsHyperparameter
FD001 FD002 FD003 FD004

Dense1 units = 128, activation=relu
Drop-out 0.3
Flatten /
Dense2 units=120, activation=relu
Dense Units = 1, Activation = Linear

Batch size 200
Optimizer Adam(lr=3e-3)
Seq-length 100

Split validation 0.2
Epochs 50

Table 3.4: Hyper-parameters and configuration of FNN model.

35

Regarding the evaluation metrics used to assess the models’ performance, we selected
MAE (Equation 1.9), RMSE (Equation 1.13) and r-squared (Equation 1.15).

3.5.3 The Effect of the Attention Mechanism

Sequential self-attention, also known as Self-Attention or intra-attention, is a powerful
mechanism that has gained significant attention in Natural Language Processing and
sequence modeling tasks such as time series data. This Attention Mechanism allows the
model to focus on different parts of the input sequence when generating representations,
providing several benefits. It assigns weights to each feature in the input sequence based
on its relevance to other features in the same sequence. These weights indicate the
importance or attention given to each feature during the prediction process. In an attempt
to observe the effect of Attention Mechanism the performance of a model, we incorporated
a Sequential Self-Attention layer into both proposed models. This layer was added before
the first GRU layer in the CNN-GRU hybrid model and before the Flatten layer in the FNN
model. The attention-activation was set to relu, and the attention-width was set to 15 in
both models. The attention width determines how many samples the model considers
simultaneously when calculating attention weights. The results obtained are displayed in
Table 3.7.

3.5.4 The Effect of Multi-Head Architecture

In the context of RUL prognosis for the C-MAPSS dataset using Multi-head architecture,
each sensor’s output is processed independently by a dedicated head. This setup enables
the network to effectively capture spatial representations. Moreover, the outputs from each
subspace are combined through concatenation with the addition of a Fully-Connected
layer, which improves the contextual information within each time series [Canizo et al.,
2019]. The final results are displayed in Table (3.8).

Additionally, the Attention Mechanism was applied to the Multi-head models to ob-
serve their combined effect on the accuracy of the models. The results are displayed in
Table 3.9.

Furthermore, we would like to mention that during our experiments, we observed that
incorporating an additional Dense layer With 20 units or (neurons) after concatenating
the outputs of all branches resulted in improvements in the FNN Multi-head model. This
additional layer can enhance the network’s capacity to learn complex patterns and high-
level representations from the concatenated features. The results of these modifications
are presented in Table 3.10.

36

CNN-GRU hybrid model. FNN model.

Figure 3.3: Flowchart for the sequential models.

37

C
N

N
-G

RU
hy

br
id

m
od

el
.

FN
N

m
od

el
.

Fi
gu

re
3.

4:
Fl

ow
ch

ar
ts

fo
rm

ul
ti-

he
ad

m
od

el
s.

38

3.6 Experimental Setup

The models were compiled using two different setups, as described in Table 3.5.
The first computer was used to run the CNN-GRU hybrid sequential model and the
CNN-GRU hybrid sequential model with the Attention Mechanism, while the second
computer was used to run the FNN sequential model, the FNN sequential model with
the Attention Mechanism and the FNN Multi-head model as well as the FNN multi-head
model with Attention Mechanism. For the CNN-GRU hybrid Multi-head model, both
with and without the Attention Mechanism and the FNN Multi-head model with the
Attention Mechanism, Google Colab was utilized. The table also contains information
about the versions of the used frameworks.

Configuration 1st computer 2nd computer
OS win 10 x64 bits win 11 x64 bits

RAM 6 GB 8 GB
ROM 500 GB 256 GB

CPU name Intel core i3 Intel core i5
CPU cores 2 2
CPU speed 2 Ghz 2.60 Ghz

GPU HD Graphics 5500 HD Graphics 620
Anaconda-v 2022.10

Python-v 3.9.13
keras-v 2.11.0

Tensorflow-v 2.11.0
Google colab

GPU T4
Python-v 3.10.12
Keras-v 2.12.0

Tensorflow-v 2.12.0

Table 3.5: Characteristics of the computers used in this work.

3.7 Results and Discussion

3.7.1 Performance Analysis of the Proposals

Both models were trained using the train data, and to evaluate their performance after
the training phase, we fed the test data to our models and obtained the next results.

The results presented in Table 3.6 indicate that the FNN model generally outperformed
the CNN-GRU hybrid model, with a decrease in RMSE by 32.49% in FD002, 5.77% in

39

FD003, and 13.20% in FD004. However, within the FD001 subset, the CNN-GRU hybrid
model outperformed the FNN model by 15.77%.

CNN-GRU hybrid FNNSubsets
MAE RMSE R-squared MAE RMSE R-squared

FD001 7.59 11.00 0.91 9.07 13.06 0.83
FD002 15.79 21.11 0.74 10.61 14.25 0.86
FD003 8.82 12.66 0.89 7.67 11.93 0.88
FD004 20.82 29.68 0.61 18.26 25.76 0.71

Table 3.6: The results for the CNN-GRU hybrid and FNN sequential models.

When applying the Attention Mechanism, as shown in Table 3.7, the results for the
CNN-GRU hybrid model highlight the effectiveness of the sequential Self-attention layer
on FD002 and FD004 subsets, with improvements in RMSE by 15.30% and 11.89%, re-
spectively. As for the FD001 and FD003 subsets, there was no improvement recorded.
Upon transitioning to the FNN model, the Attention Mechanism helped improve RMSE
results for FD001 and FD004 by 7.73% and 10.44%, respectively, while no improvement
was recorded for the FD002 and FD003 subsets.

CNN-GRU hybrid FNNSubsets
MAE RMSE R-squared MAE RMSE R-squared

FD001 7.66 11.46 0.91 7.79 12.05 0.86
FD002 12.62 17.88 0.80 10.05 14.49 0.85
FD003 15.36 20.72 0.62 8.16 13.98 0.86
FD004 17.93 26.15 0.68 17.09 23.07 0.77

Table 3.7: The results for the CNN-GRU hybrid and FNN sequential models with attention
mechanism.

While examining the impact of multi-head architecture on both proposed models, the
results in Table 3.8 revealed no improvement for the CNN-GRU compared to the sequential
architecture. Regarding the FNN model, we noticed an improvement of 2.22% in FD001
compared to the sequential architecture. However, the other subsets did not show any
improvement.

The inclusion of the attention mechanism in multi-head models showed no significant
improvement in the performance of the CNN-GRU hybrid model, as indicated in Table
3.9, except for the FD002 subset where RMSE improved by 8.73% compared to the multi-
head model without an attention mechanism. Overall, it is evident that the sequential
architecture outperformed the multi-head architecture when applied to the CNN-GRU
hybrid model. As for FNN, there was a slight improvement of 1.09% in FD001. Notably,

40

CNN-GRU hybrid FNNSubsets
MAE RMSE R-squared MAE RMSE R-squared

FD001 9.75 13.55 0.88 9.12 12.77 0.84
FD002 27.20 34.12 0.33 26.68 31.97 0.26
FD003 15.07 20.02 0.70 14.40 18.36 0.72
FD004 32.28 39.63 0.31 36.47 45.19 0.15

Table 3.8: The results for the CNN-GRU hybrid and FNN multi-head models.

we recorded a modest improvement of 10.47% in FD002 and a substantial improvement
of 23.98% in FD004. However, in the case of FD003, there was no improvement compared
to the results obtained from the multi-head model without the Attention Mechanism.

CNN-GRU hybrid FNNSubsets
MAE RMSE R-squared MAE RMSE R-squared

FD001 9.97 14.62 0.85 9.76 12.63 0.86
FD002 25.69 31.14 0.46 23.75 28.62 0.37
FD003 16.35 21.88 0.64 13.80 18.37 0.75
FD004 37.42 43.81 0.15 28.68 34.35 0.51

Table 3.9: The results for the CNN-GRU hybrid and FNN multi-head models with attention
mechanism.

To enhance the model’s performance following the addition of the last dense layer, it
exhibited improvements in both subsets FD001 and FD003 by 10.72% and 47.60% respec-
tively when compared to the previous multi-head model. Conversely, no improvements
were observed in the FD002 and FD004 subsets. In view of the results obtained, we can say
that the multi-head architecture in some sub-sets provided better performance compared
to the sequential architecture when applied on the FNN model.

FNNSubsets
MAE RMSE R-squared

FD001 7.21 11.40 0.87
FD002 23.88 34.22 0.13
FD003 6.74 9.62 0.93
FD004 34.91 47.79 0.06

Table 3.10: The results for the improved FNN multi-head model (without attention mech-
anism).

As a last note, the RUL predictions made by both models, the CNN-GRU hybrid model
with Attention Mechanism and FNN model with Multi-Head Architecture, for the four

41

subsets are visualized in Figures 3.5 and 3.6, respectively. The horizontal axis indicates
the number of test engines, while the vertical axis corresponds to the RUL values. Within
each subfigure, the disparity between the two graphs represents the error in the RUL
prediction.

It is crucial to consider the computational burden and extended run time associated
with the multi-head model when compared to the sequential approach. These factors
should be taken into account when deciding on the appropriate model for RUL prediction,
considering the trade-off between improved accuracy and computational efficiency.

3.7.2 Comparing the Best Models to State-Of-The-Art-Results

Table 3.11 compares the best results obtained in this work with other recent state-of-the-
art approaches for RUL prognosis using the C-MAPSS dataset. The selected approaches
are CNN [Sateesh Babu et al., 2016], DCNN ([Li et al., 2018]), FNN ([Ayodeji et al., 2021]),
and lastly GRU ([Azyus et al., 2022]).

When evaluating using the RMSE metric, for the FD001 subset, the results of our
proposed FNN multi-head model rank second, following only the work of [Ayodeji et al.,
2021]. Conversely, for the FD004 subset, the results obtained with our proposed CNN-
GRU hybrid model with an attention mechanism rank second, with [Li et al., 2018] being
the top performing one. However, in the FD002 and FD003 subsets, our proposed models
outperformed all state-of-the-art works used for comparison.

It is evident that deep-learning approaches show a promising future in the field of
RUL prognosis, especially with emerging architectures such as multi-head models and
attention mechanisms. This work concluded that perhaps there are other factors influ-
encing the overall effect of the multi-head architecture and attention mechanism on the
model’s performance that should also be explored.

RMSEAlgorithms
FD001 FD002 FD003 FD004

CNN [Sateesh Babu et al., 2016] 18.44 30.29 19.81 29.15
DCNN [Li et al., 2018] 12.61 22.36 12.64 23.31

FNN [Ayodeji et al., 2021] 8.68 / 9.69 /
GRU [Azyus et al., 2022] 20.55 34.28 31.74 44.75

CNN-GRU sequential W/AM (proposed) 11.46 17.88 20.72 26.15
FNN multi-head (proposed) 11.40 34.22 9.62 47.79

Table 3.11: Comparing our models with some of the state-of-art results.

42

FD001 FD002

FD003 FD004

Figure 3.5: Predicted RUL by CNN-GRU hybrid model W/AM.

FD001 FD002

FD003 FD004

Figure 3.6: Predicted RUL by FNN multi-head model.

43

Conclusion

In this chapter, we proposed two models: a CNN-GRU hybrid model and an FNN
model. Both models employ the linear degradation method in the data pre-processing
phase. To improve the accuracy of both models, we integrated the attention mechanism
and multi-head architecture, observing their individual and combined effects on the per-
formance of our proposed models. Despite encountering some limitations, both models
show promise in improving accuracy and overall performance.

44

General Conclusion

In this work, we directed our attention toward the prognosis estimation of Remaining
Useful Life (RUL) for airplane turbofan engines, utilizing the C-MAPSS data-set. The main
objective was to propose a hybrid deep learning model incorporating CNN (Convolutional
Neural Network) and GRU (Gated Recurrent Unit) deep neural networks for this purpose.
CNN is designed to automatically learn hierarchical patterns and features from input data
through the use of convolutional layers, pooling layers, and fully connected layers. On
the other hand, GRU is a type of recurrent neural network (RNN) commonly used for
sequential data processing tasks, including natural language processing and time series
analysis. GRU networks have gating mechanisms that allow them to selectively retain or
update information at each time step, thereby rendering them effective in capturing long-
term dependencies in sequential data. In addition, we introduced a second model, FNN
(Feedforward Neural Network), to address the same problem as the hybrid model. FNN is
a fundamental and general-purpose type of Artificial Neural Network (ANN) in which the
information flows in a forward direction, from the input layer through one or more hidden
layers to the output layer. To improve the performance of the models presented, we opted
to incorporate the Attention Mechanism. The AM enables models to effectively focus
on specific parts of the input sequence, giving more importance to relevant information
while suppressing irrelevant or redundant information. Furthermore, we employed a
Multi-head architecture in an effort to enhance the accuracy of both models. Multi-
head architecture allows the parallel processing of multiple heads (or sub-models), with
each one specializing in a distinct feature. This approach enables the model to leverage
the strengths of each specialized sub-model and capture a wider range of information.
Finally, we compared the results obtained with those of other relevant studies that tackled
the same task, specifically predicting Remaining Useful Life (RUL), using the identical
C-MAPSS dataset.

It is inevitable to encounter certain challenges while conducting research, and our

45

work is no exception. Among these challenges, we list the following:

▶ Limited access to articles and resources, particularly recent ones.
▶ Another challenging requirement is writing the master’s thesis in English, consid-

ering that the majority of resources and tutorials are in English as well, adding
additional difficulty due to our educational background in French.

▶ The lack of powerful equipment that can provide a convenient environment for
running our codes is another challenge. Although we used Google Colab to mitigate
this issue, our sessions are automatically terminated upon the completion of the
allocated computing time.

The results we have obtained are promising. Nevertheless, it is important to note
that these findings are based on certain restrictive assumptions and have the potential
for further improvement by exploring alternative research avenues. One such avenue is
to investigate alternative architectures, such as transformers and ensemble learning. The
latter was initially part of our research agenda but unfortunately had to be excluded due
to the pressing deadline. Additionally, it would be advantageous to assess our models
on the new CMAPSS dataset. Another intriguing direction that we intended to explore
involved the use of optimization metaheuristics for neural architecture search. However,
in our pursuit of achieving state-of-the-art results, we ultimately decided to focus our time
and effort into deep learning-based methods, with the aim of enhancing the performance
of our proposed models, rather than exploring an entirely separate research discipline.

This project has proven beneficial to us on several levels. It allowed us to acquire
new knowledge and strengthen existing skills. We delved into the field of maintenance,
with a special focus on the Remaining Useful Life and, most importantly, Deep Learning
techniques. All of these research areas required thorough literature analysis, as they were
unfamiliar topics not covered during our Master’s program. Additionally, it provided us
with the opportunity to learn a new programming language, Python, as well as Deep
Learning frameworks.

46

Bibliography

Karan Aggarwal, Maad M Mĳwil, Abdel-Hameed Al-Mistarehi, Safwan Alomari, Murat
Gök, Anas M Zein Alaabdin, Safaa H Abdulrhman, et al. Has the future started? the
current growth of artificial intelligence, machine learning, and deep learning. Iraqi
Journal for Computer Science and Mathematics, 3(1):115–123, 2022.

Anders Krogh. What are artificial neural networks? Nature biotechnology, 26(2):195–197,
2008.

Joanna Z Sikorska, Melinda Hodkiewicz, and Lin Ma. Prognostic modelling options for
remaining useful life estimation by industry. Mechanical systems and signal processing, 25
(5):1803–1836, 2011.

Chang Woo Hong, Changmin Lee, Kwangsuk Lee, Min-Seung Ko, Dae Eun Kim, and
Kyeon Hur. Remaining useful life prognosis for turbofan engine using explainable deep
neural networks with dimensionality reduction. Sensors, 20(22):6626, 2020.

Abhinav Saxena, Kai Goebel, Don Simon, and Neil Eklund. Damage propagation mod-
eling for aircraft engine run-to-failure simulation. In 2008 international conference on
prognostics and health management, pages 1–9. IEEE, 2008.

Crescenzio Gallo. Artificial neural networks tutorial. In Encyclopedia of Information Science
and Technology, Third Edition, pages 6369–6378. IGI Global, 2015.

Raniah Zaheer and Humera Shaziya. A study of the optimization algorithms in deep
learning. In 2019 third international conference on inventive systems and control (ICISC),
pages 536–539. IEEE, 2019.

Christian Darken, Joseph Chang, John Moody, et al. Learning rate schedules for faster
stochastic gradient search. In Neural networks for signal processing, volume 2, pages 3–12.
Citeseer, 1992.

47

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

Mahesh Chandra Mukkamala and Matthias Hein. Variants of rmsprop and adagrad
with logarithmic regret bounds. In International conference on machine learning, pages
2545–2553. PMLR, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929–1958, 2014.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In International conference on machine learning,
pages 448–456. pmlr, 2015.

Neha Yadav, Anupam Yadav, Manoj Kumar, et al. An introduction to neural network methods
for differential equations, volume 1. Springer, 2015.

Murat H Sazli. A brief review of feed-forward neural networks. Communications Faculty of
Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 50(01), 2006.

AD Dongare, RR Kharde, Amit D Kachare, et al. Introduction to artificial neural network.
International Journal of Engineering and Innovative Technology (ĲEIT), 2(1):189–194, 2012.

Xiang Li, Qian Ding, and Jian-Qiao Sun. Remaining useful life estimation in prognostics
using deep convolution neural networks. Reliability Engineering & System Safety, 172:
1–11, 2018.

Davide Chicco, Matthĳs J Warrens, and Giuseppe Jurman. The coefficient of determination
r-squared is more informative than smape, mae, mape, mse and rmse in regression
analysis evaluation. PeerJ Computer Science, 7:e623, 2021.

Dounia Lakhmiri, Sébastien Le Digabel, and Christophe Tribes. Hypernomad: Hyperpa-
rameter optimization of deep neural networks using mesh adaptive direct search. ACM
Transactions on Mathematical Software (TOMS), 47(3):1–27, 2021.

Saad Hikmat Haji and Adnan Mohsin Abdulazeez. Comparison of optimization tech-
niques based on gradient descent algorithm: A review. PalArch’s Journal of Archaeology
of Egypt/Egyptology, 18(4):2715–2743, 2021.

48

Sanskruti Patel and Atul Patel. Deep leaning architectures and its applications: a survey.
International journal of computer sciences and engineering, 6(6):1177–1183, 2018.

Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad Al-Dujaili, Ye Duan, Omran
Al-Shamma, José Santamaría, Mohammed A Fadhel, Muthana Al-Amidie, and Laith
Farhan. Review of deep learning: Concepts, cnn architectures, challenges, applications,
future directions. Journal of big Data, 8:1–74, 2021.

Sanam Narejo, Shahnawaz Talpur, Madeha Memon, and Amna Rahoo. An automated
system for traffic sign recognition using convolutional neural network. 3c Tecnología:
glosas de innovación aplicadas a la pyme, 9(1):119–135, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

Caihong Hu, Qiang Wu, Hui Li, Shengqi Jian, Nan Li, and Zhengzheng Lou. Deep learning
with a long short-term memory networks approach for rainfall-runoff simulation. Water,
10(11):1543, 2018.

Giang Nguyen, Stefan Dlugolinsky, Martin Bobák, Viet Tran, Álvaro López García, Igna-
cio Heredia, Peter Malík, and Ladislav Hluchỳ. Machine learning and deep learning
frameworks and libraries for large-scale data mining: a survey. Artificial Intelligence
Review, 52:77–124, 2019.

Francois Chollet. Deep learning with Python. Simon and Schuster, 2021.

Gaige Chen, Jinglong Chen, Yanyang Zi, Jun Pan, and Wei Han. An unsupervised feature
extraction method for nonlinear deterioration process of complex equipment under
multi dimensional no-label signals. Sensors and Actuators A: Physical, 269:464–473, 2018.

Wennian Yu, II Yong Kim, and Chris Mechefske. Remaining useful life estimation using a
bidirectional recurrent neural network based autoencoder scheme. Mechanical Systems
and Signal Processing, 129:764–780, 2019.

Tianyi Wang, Jianbo Yu, David Siegel, and Jay Lee. A similarity-based prognostics ap-
proach for remaining useful life estimation of engineered systems. In 2008 international
conference on prognostics and health management, pages 1–6. IEEE, 2008.

Racha Khelif, Simon Malinowski, Brigitte Chebel-Morello, and Noureddine Zerhouni.
Rul prediction based on a new similarity-instance based approach. In 2014 IEEE 23rd
International Symposium on Industrial Electronics (ISIE), pages 2463–2468. IEEE, 2014.

Raphael Yende. Support de cours de maintenance informatique. 2018.

49

Ahmed Fikri Ali Mosallam Mosallam. Remaining useful life estimation of critical components
based on Bayesian Approaches. PhD thesis, Université de Franche-Comté, 2014.

Hassani Nihal. Une approche d’optimisation pour une meilleure efficacité d’un modèle d’estimation
de temps restant utile du moteur à double flux à base de deep learning. PhD thesis, university
center of abdalhafid boussouf-MILA, 2022.

Messaoud Amira, Aissam Boulechefar, and Rachid Encadreur Belhadef. Optimisation et
amélioration de la maintenance par la fiabilité: Cas d’une turbine d’une centrale électrique. PhD
thesis, Université de Jĳel, 2019.

Qi Hao, Yunjiao Xue, Weiming Shen, Brian Jones, and Jie Zhu. A decision support
system for integrating corrective maintenance, preventive maintenance, and condition-
based maintenance. In Construction Research Congress 2010: Innovation for Reshaping
Construction Practice, pages 470–479, 2010.

Estelle Deloux. Politiques de maintenance conditionnelle pour un système à dégradation continue
soumis à un environnement stressant. PhD thesis, Université de Nantes, 2008.

Yongyi Ran, Xin Zhou, Pengfeng Lin, Yonggang Wen, and Ruilong Deng. A sur-
vey of predictive maintenance: Systems, purposes and approaches. arXiv preprint
arXiv:1912.07383, 2019.

Diego Jair Rodriguez Obando. From Deterioration Modeling to Remaining Useful Life Control:
a comprehensive framework for post-prognosis decision-making applied to friction drive systems.
PhD thesis, Université Grenoble Alpes, 2018.

Adrian Cubillo, Suresh Perinpanayagam, and Manuel Esperon-Miguez. A review of
physics-based models in prognostics: Application to gears and bearings of rotating
machinery. Advances in Mechanical Engineering, 8(8):1687814016664660, 2016.

Jing Liu. A dynamic modelling method of a rotor-roller bearing-housing system with a
localized fault including the additional excitation zone. Journal of Sound and Vibration,
469:115144, 2020.

Racha Khelif, Brigitte Chebel-Morello, Simon Malinowski, Emna Laajili, Farhat Fnaiech,
and Noureddine Zerhouni. Direct remaining useful life estimation based on support
vector regression. IEEE Transactions on industrial electronics, 64(3):2276–2285, 2016.

Biao Wang, Yaguo Lei, Naipeng Li, and Tao Yan. Deep separable convolutional network for
remaining useful life prediction of machinery. Mechanical systems and signal processing,
134:106330, 2019.

50

Hamed Khorasgani, Gautam Biswas, and Shankar Sankararaman. Methodologies for
system-level remaining useful life prediction. Reliability Engineering & System Safety,
154:8–18, 2016.

Zeqi Zhao, Bin Liang, Xueqian Wang, and Weining Lu. Remaining useful life prediction of
aircraft engine based on degradation pattern learning. Reliability Engineering & System
Safety, 164:74–83, 2017.

Ming Dong and David He. A segmental hidden semi-markov model (hsmm)-based
diagnostics and prognostics framework and methodology. Mechanical systems and signal
processing, 21(5):2248–2266, 2007.

Junbo Son, Shiyu Zhou, Chaitanya Sankavaram, Xinyu Du, and Yilu Zhang. Remaining
useful life prediction based on noisy condition monitoring signals using constrained
kalman filter. Reliability Engineering & System Safety, 152:38–50, 2016.

Suzan Alaswad and Yisha Xiang. A review on condition-based maintenance optimization
models for stochastically deteriorating system. Reliability engineering & system safety,
157:54–63, 2017.

Khanh TP Nguyen, Kamal Medjaher, and Do T Tran. A review of artificial intelligence
methods for engineering prognostics and health management with implementation
guidelines. Artificial Intelligence Review, 56(4):3659–3709, 2023.

Racha Khelif. Estimation du RUL par des approches basées sur l’expérience: de la donnée vers la
connaissance. PhD thesis, Université de Franche-Comté, 2015.

Paulo Roberto de Oliveira da Costa, Alp Akçay, Yingqian Zhang, and Uzay Kaymak.
Remaining useful lifetime prediction via deep domain adaptation. Reliability Engineering
& System Safety, 195:106682, 2020.

Piero Baraldi, Michele Compare, Sergio Sauco, and Enrico Zio. Ensemble neural network-
based particle filtering for prognostics. Mechanical Systems and Signal Processing, 41(1-2):
288–300, 2013.

Giduthuri Sateesh Babu, Peilin Zhao, and Xiao-Li Li. Deep convolutional neural network
based regression approach for estimation of remaining useful life. In Database Systems
for Advanced Applications: 21st International Conference, DASFAA 2016, Dallas, TX, USA,
April 16-19, 2016, Proceedings, Part I 21, pages 214–228. Springer, 2016.

Abiodun Ayodeji, Wenhai Wang, Jianzhong Su, Jianquan Yuan, and Xinggao Liu. An em-
pirical evaluation of attention-based multi-head models for improved turbofan engine
remaining useful life prediction. arXiv preprint arXiv:2109.01761, 2021.

51

Adryan Fitra Azyus, Sastra Kusuma Wĳaya, Mohd Naved, et al. Determining rul predictive
maintenance on aircraft engines using gru. Journal of Mechanical, Civil and Industrial
Engineering, 3(3):79–84, 2022.

Adel S Eesa and Wahab Kh Arabo. A normalization methods for backpropagation: a
comparative study. Science Journal of University of Zakho, 5(4):319–323, 2017.

Mikel Canizo, Isaac Triguero, Angel Conde, and Enrique Onieva. Multi-head cnn–rnn
for multi-time series anomaly detection: An industrial case study. Neurocomputing, 363:
246–260, 2019.

52

Acronyms

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

CV Computer vision

NLP Natural Language Processing

DNN Deep Neural Network

ANN Artificial Neural Network

Tanh Hyperbolic Tangent Function

ReLU Rectified Linear Unit

Leaky ReLU Leaky Rectified Linear Unit

MSE Mean Squared Error

MAE Mean Absolute Error

BCE Binary Cross-Entrop

SGD Stochastic Gradient Descen

CCE Categorical Cross-Entropy

Adagrad Adaptive Gradient Algorithm

Adadelta Adaptive Delta Algorithm

RMSProp Root Mean Square Propagation

53

Adam Adaptive Moments

RMSE Root Mean Square Error

PHM Prognostics and Health Management

LR Learning Rate

GD Gradient Descent

CNN Convolutional Neural Network

FC Full Connection

RNN Recurrent Neural Network

PL Pooling Layer

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

CPU Central Processing Unit

API Application Programming Interface

USP Unique Selling Proposition

RUL Remaining Useful Life

CBM Condition-Based Maintenance

CM Condition Monitoring

HMM Hidden Markov Model

ARMA Auto-Regressive Moving Average model

BN Bayesian networks

ARIMA Integrated Auto-Regressive Moving Average model

SVR Support Vector Regression

IBM Instance-Based Methods

NN Neural Network

SVM Support Vector Machines

54

DCNN Deep Convolutional Neural Network

SRNN Simple Recurrent Neural Network

RaPC Retrieve and Propose with Case-based reasoning

C-MAPSS Commercial Modular Aero-Propulsion System Simulation

AM Attention Mechanism

FNN Feedforward Neural Network

MLPs Multi-Layer Perceptron

NASA National Aeronautics and Space Administration

55

	Acknowledgments
	Dedication
	Dedication
	Abstract
	Contents
	List of Figures
	List of Tables
	General Introduction
	Deep Learning
	Preliminaries
	Artificial Neural Networks
	Activation Functions
	Loss functions
	Optimizer
	Batch normalization
	Forward propagation and Backpropagation
	Evaluation Metrics
	Hyper-parameters

	Basic Deep Learning Architectures
	Convolutional Neural Network
	LSTM
	GRU

	Deep Learning Frameworks
	TensorFlow
	Keras

	An Overview On Remaining Useful Life
	Maintenance Definition
	Maintenance Types
	Corrective maintenance
	Preventive maintenance

	Remaining Useful Life of an equipment
	Modeling Methods of RUL Estimation
	Physics-based models
	Data-driven models
	Hybrid models

	Deep Learning Techniques For RUL Estimation- Related Works-

	Contribution: Development of a Hybrid Deep Learning Model for RUL Estimation
	Methodology: Common Steps for Building a Model for a Regression Problem
	Motivation
	Data Description - C-MAPSS Dataset -
	Data Pre-processing
	Contributions
	The first proposed model: CNN-GRU hybrid
	The second proposed model: FNN model
	The Effect of the Attention Mechanism
	The Effect of Multi-Head Architecture

	Experimental Setup
	Results and Discussion
	Performance Analysis of the Proposals
	Comparing the Best Models to State-Of-The-Art-Results

	General Conclusion
	Bibliography
	Acronyms

