CENTRE UNIVERSITAIRE DE MILA INSTITUT DES SCIENCES ET DE LA TECHNOLOGIE

Réf. /11

Mémoire de fin d'étude

Présenté pour l'obtention du diplôme de

Licence Académique

Domaine : Mathématiques et Informatique Filière : Mathématiques Spécialité : Mathématiques Appliquées

<u>Thème</u>

Présenté par :

- Meriem Belmerabet

- Massika Guedjane

Dirigé par : - Mohammed salah Abdelouahab

Année universitaire 2010-2011

Nous remercions vivement monsieur Mohammed-Salah Abdelouahab Pour avoir dirigé ce travail de

Recherche.

Nous tenons à lui témoigner notre gratitude pour avoir renforcer notre ambition et donner plus de force pour aller plus loin, et cela grâce à nos discussions fructueuses, à ses conseils, à ses suggestions ainsi qu'à sa confiance en nous.

Nous voudrons dire toute notre reconnaissance à nos parents pour leur dévouement sans limite et pour tout ce qu'ils nous ont donné sur tous les plants, et remercier nos familles et nos amis pour leur soutien constant.

Meriem et Massika

Table des matières

Introduction Générale					
1	Notions Fondamentaux				
	1.1	Définitions	3		
	1.2	Théorème d'existence et unicité de Cauchy-Lipschitz	4		
2	Résolution des EDO par les méthodes numériques à un pas				
	2.1	Méthodes de Taylor	5		
		2.1.1 Méthode d'Euler	6		
		2.1.2 Méthode d'Euler améliorée	8		
		2.1.3 Méthode de Taylor d'ordre p	9		
	2.2	Méthodes de Runge-Kutta	9		
		2.2.1 Méthode de Runge-Kutta d'ordre 2 (RK2)	10		
		2.2.2 La méthode de Runge-Kutta d'ordre 4 (RK4)	11		
3	Rés	blution des EDO par les méthodes numériques multipas	13		
	3.1	Méthodes d'Adams-Bashforth	14		
	3.2	Méthodes d'Adams-Moulton	15		
	3.3	Méthodes prédiction-correction	16		
4	App	lications sur quelques systèmes	19		
	4.1	Système financier	19		
	4.2	Attracteur de Lorenz	21		
Co	onclu	sion Générale	24		
\mathbf{A}	nnex	e (Programmation)	25		
Bi	bliog	raphie	28		

Introduction Générale

Les équations différentielles ont une grande importance théoriques et pratique aussi, car de nombreux phénomènes naturels et expériences scientifiques peuvent se modéliser par de telles équations [1]. Mais les méthodes classiques de résolution explicite des équations différentielles qui se ramenant à des calculs de primitives ne sont pas toujours efficaces, surtout pour les équations non linéaires. Pour cette raison, les mathématiciens ont trouvé une autre solution : c'est résoudre les équations différentielles numériquement, ce genre de résolution est presque valable pour les équations de toute nature.

Dans notre mémoire; on s'intéresse à la solution approchée d'une équation différentielle ordinaire du 1^{er} ordre, et présenter un certain nombre de méthodes numériques permettant de trouver cette solution.

Nous avons d'aborde consacré un chapitre entier aux notions théoriques fondamentaux dans la théorie des équations différentielles, puis nous essayons de résoudre le problème de Cauchy par des méthodes numériques différentes et donner les techniques et les principes de chaque méthode, cette partie est enrichie en plusieurs exemples et exercices pou bien comprendre.

La plus part des méthodes numériques exposées avaient peut être effectivement mises en œuvre au moyen de programmes écrites en plusieurs langages de programmation (nous utilisons la langage de programmation Matlab). En fin, on propose des applications pour résoudre quelque système des équations différentielles, c'est-à-dire le cas des équations multidimensionnelles.

Chapitre 1

Notions Fondamentaux

1.1 Définitions

1. On appelle équation différentielle toute équation dans la quelle figurent, une variable $t \in I \subset \mathbb{R}$, la fonction inconnue y = f(t), et ses dérivée $y', y^{(2)}, ..., y^{(n)}$. On peut écrire symboliquement les équations différentielles comme suite :

$$f(t, y, y', ..., y^{(n)}) = 0$$
(1.1)

- 2. On appelle équation différentielle ordinaire toute équation de la forme (1.1) dont la fonction inconnue est à une seule variable on la note EDO.
- 3. On appelle ordre d'une équation différentielle l'ordre de la dérivée le plus élevé contenue dans cette équation différentielle.

(Dans notre mémoire, on s'intéresse uniquement aux équations différentielle du 1^{er} ordre dont la forme générale est : y' = f(x, y)).

- 4. On appelle solution de l'équation différentielle (1.1) tout couple (J, f) formé d'un intervalle J ⊂ I ⊂ ℝ et d'une fonction f définie sur J et vérifiant les conditions suivantes :
 - a) f est n fois dérivable sur J.
 - **b)** $\forall t \in J, F(t, f(t), f'(t), ..., f^{(n)}(t)) = 0.$
- 5. Si la seule solution prolongeant f est f elle même, alors f est dite maximale.

Une solution maximale (J, f) est dite globale si elle est définie pour tout (J = I).

1.2 Théorème d'existence et unicité de Cauchy-Lipschitz

Problème de Cauchy

Soit U un ouvert de $\mathbb{R} \times \mathbb{R}^n$ et $f : U \to \mathbb{R}$ une application continue. On considère l'équation différentielle

$$y' = f(t, y), \quad (t, y) \in U$$
 (1.2)

Etant donné un point $(t_0, y_0) \in U$, le problème de Cauchy consiste à trouver une solution $y: I \to \mathbb{R}^n$ de (1.2) sur un intervalle I contenant t_0 dans son intérieur, telle que $y(t_0) = y_0$.

Proposition 1.1

Soit f une fonction réelle définie et continue sur un domaine $D \subset \mathbb{R}^2$. Soit Φ une fonction réelle définie et continue sur un intervalle $\alpha \leq t \leq \beta$ tel que $(t, \Phi(t)) \in D$ pour tout $t \in [\alpha, \beta]$. Soit t_0 un réel tel que $\alpha < t_0 < \beta$. Alors Φ est une solution du problème de Cauchy

$$\begin{cases} \frac{dy}{dt} = f(t, y) \\ y(t_0) = y_0 \end{cases}, \ t \in [\alpha, \beta] \end{cases}$$

si et seulement si

$$\Phi(t) = y_0 + \int_{t_0}^t f(x, \Phi(x)) \, dx, \, \forall t \in [\alpha, \beta]$$

Définition 1.2

Soient I, J deux intervalles ouverts $A \subset I \times J$, l'application $f : I \times J \to \mathbb{R}$ est dit lipschitzienne en la deuxième variable, s'il existe $K \ge 0$ tel que :

$$\forall (x, y_1), (x, y_2) \in A, |f(x, y_1) - f(x, y_2)| \le K |y_1 - y_2|$$

Théorème de Cauchy-Lipschitz

Théorème 1.3

Soit f une fonction continue et lipschitzienne en la deuxième variable sur un ouvert U de \mathbb{R}^2 , soit (t_0, y_0) un élément de U, alors il existe une unique solution maximale de léquation (1.2), sur un intervalle contenant t_0 , vérifiant la condition initiale $y(t_0) = y_0$.

Chapitre 2

Résolution des EDO par les méthodes numériques à un pas

L'objectif de ce chapitre est de décrire un certain nombre de méthodes permettant de résoudre numériquement le problème de Cauchy à condition initiale $y(t_0) = y_0$ pour une équation différentielle de la forme (1.2).

où $f : [t_0, t_0 + T] \times \mathbb{R} \to \mathbb{R}$ est une fonction suffisamment régulière. Nous avons choisi ici d'exposer le cas des équations unidimensionnelles.

Etant donné une subdivision $t_0 < t_1 < ... < t_N = t_0 + T$ de $[t_0, t_0 + T]$, on cherche à déterminer des valeurs approchées $y_0, y_1, ..., y_N$ des valeurs $y(t_n)$ prises par la solution exacte y. Pour une étude détaillée consulter [1].

Définition 2.1

On appelle méthode à un pas une méthode permettant de calculer y_{n+1} à partir de la seule valeur antérieure y_n .

2.1 Méthodes de Taylor

Soit le problème de Cauchy

$$\begin{cases} y' = f(t, y) \\ y(t_0) = y_0 \end{cases}$$
(2.1)

L'approximation de la solution du problème de Cauchy semble être une application naturelle du théorème de Taylor, ici on développe la fonction inconnue en polynôme de Taylor. La forme la plus élémentaire conduit à la méthode d'Euler qui est d'une importance tant théorique que pratique [6].

2.1.1 Méthode d'Euler

Le but de la méthode d'Euler est de trouver une approximation simple du problème (2.1).

Soit $t_n = t_0 + nh$ pour n = 0, ..., N un réseau régulier de pas $h = \frac{T}{N}$, soit y_n une approximation par la méthode d'Euler de $y(t_n)$, solution du problème de Cauchy, la méthode d'Euler (ou méthode de tangente) est donnée par :

$$\begin{cases} y_0 = y(t_0) \\ y_{n+1} = y_n + hf(t_n, y_n) \end{cases}, \ \forall n = 0, 1, ..., N - 1 \tag{2.2}$$

On peut arriver à la formule (2.2) par les étapes suivantes :

Soit Φ la solution exacte du problème (2.1). On écrit le développement de Taylor de Φ en point $t = t_n$ on a :

$$\Phi(t_n + h) = \Phi(t_n) + h\Phi'(t_n)$$
$$= \Phi(t_n) + hf(t_n, \Phi(t_n))$$

On approxime $\Phi(t_n + h) = \Phi(t_{n+1})$ et $\Phi(t_n)$ par leurs approximations y_{n+1} et y_n respectivement, on trouve : $y_{n+1} = y_n + hf(t_n, y_n)$.

Exemple 2.2

Soit le problème de Cauchy :

$$\begin{cases} y' = 1 - t + 4y \\ y(0) = 1 \end{cases}, t \in [0, 1]$$
(2.3)

On veut utiliser la formule d'Euler pour calculer une approximation de $y = \Phi(t)$ sur un réseau régulier de pas $h = 0.1 = \frac{T}{N} \Rightarrow N = 10$, $t_n = 0.1n$, $\forall n = 0, 1, ..., 9$. On a alors l'expression :

$$\begin{cases} y_0 = 1\\ y_{n+1} = 1.4y_n - 0.01n + 0.1 \end{cases}, \ \forall n = 0, 1, ..., 9.$$

Si n = 0, $y_1 = 1.4y_0 - 0.01(0) + 0.1 = 1.5$. Si n = 1, $y_2 = 1.4(1.5) - 0.01(1) + 0.1 = 2.19$. Si n = 2, $y_3 = 3.146$. De la même manière on calcule y_{n+1} jusqu'à n = 9. Le tableau suivant contient une comparaison de résultats du solution de y' = 1 - t + 4y,

y(0) = 1, en utilisant des différents pas h.

t	h = 0.1	h = 0.01	Exacte
0	1.0000000	1.0000000	1.0000000
0.1	1.5000000	1.5952901	1.6090418
0.2	2.1900000	2.4644587	2.5053299
0.3	3.1460000	3.7390345	3.8301388
0.4	4.4744000	5.6137120	5.7942260
0.5	6.3241600	8.3766865	8.7120041
0.6	8.9038240	12.454558	13.052522
0.7	12.505354	18.478797	19.515518
0.8	17.537495	27.384136	29.144880
0.9	24.572493	40.554208	43.4979003
1.0	34.411490	60.037126	64.897803

L'erreur local de la méthode d'Euler

Soit $y = \Phi(t)$ la solution de (2.1), supposons que $\Phi \in C^2([t_0, t_0 + T])$ $(f, f_t, f_y$ sont continues sur $[t_0, t_0 + T]$), si f a ces propriétés et si Φ est une solution de (2.1) alors :

$$\Phi'(t) = f(t, \Phi(t))$$
 et $\Phi''(t) = f_t(t, \Phi(t)) + f_y(t, \Phi(t))f(t, \Phi(t))$

En utilisant le développement de Taylor de Φ en point $t_n + h$, on obtient :

$$\Phi(t_n + h) = \Phi(t_n) + h\Phi'(t_n) + \frac{h^2}{2}\Phi''(\zeta),$$

avec $\zeta \in]t_n, t_{n+1}[.$

Notons $\Phi(t_n + h) = \Phi(t_{n+1})$ et $\Phi'(t_n) = f(t_n, \Phi(t_n))$ on trouve :

$$\Phi(t_{n+1}) = \Phi(t_n) + hf(t_n, \Phi(t_n)) + \frac{h^2}{2} \Phi''(\zeta)$$
(2.4)

En soustraire l'équation (2.2) de (2.4) on obtient :

$$\Phi(t_{n+1}) - y_{n+1} = \left[\Phi(t_n) - y_n\right] + h\left[f(t_n, \Phi(t_n)) - f(t_n, y_n)\right] + \frac{h^2}{2}\Phi''(\zeta).$$

Posons $y_n = \Phi(t_n)$, nous obtenons la formule de l'erreur local e_{n+1} :

$$e_{n+1} = \Phi(t_{n+1}) - y_{n+1} = \frac{h^2}{2} \Phi''(\zeta)$$

-L'erreur local de la méthode d'Euler est proportionnel avec h^2 . Il peut être majoré de la forme suivante : $_{Mh^2}$

$$|e_{n+1}| \le \frac{Mh^2}{2}$$

où M est le maximum de $|\Phi''(t)|$ sur $[t_n, t_{n+1}]$.

Exemple 2.3

Soit le problème (2.3) : Soit $\Phi(t) = y$ la solution exacte de ce problème telle que : $\Phi(t) = \frac{4t-3+19e^{4t}}{16}$. Φ est deux fois dérivable sur [0.1], et on $a : \Phi''(t) = 19e^{4t}$.

$$e_{n+1} = \Phi(t_{n+1}) - y_{n+1} = \frac{h^2}{2} \Phi''(\zeta), t_n < \zeta < t_n + h = t_{n+1}.$$

Par exemple, l'erreur en $t_1 = 0.1 \text{ est} : e_1 = \frac{19e^{4\zeta}(0.01)}{2}, tq \ 0 < \zeta < 0.1.$ Il est claire que : $e_1 > 0$ et $e^{4\zeta} < e^{0.4}$, on a alors :

$$e_1 \le \frac{19e^{0.4} \left(0.01\right)}{2} \approx 0.142.$$

On a aussi $e^{4\zeta} > 1$ alors :

$$e_1 > \frac{19\,(0.01)}{2} = 0.095$$

donc :

$$0.095 \le e_1 \le 0.142.$$

2.1.2 Méthode d'Euler améliorée

Nous avons di que la méthode d'Euler a une importance théorique que classique, c'est à dire qu'elle est n'est pas très efficace, alors elle est désirable à développer par divers méthodes telles : la méthode d'Euler améliorée.

L'idée de cette méthode est d'utiliser la formule d'Euler pour créer une autre formule plus mieux, elle est donnée par :

$$y_{n+1} = y_n + h \frac{f(t_n, y_n) + f(t_n + h, y_n + hf(t_n, y_n))}{2}$$

avec n = 0, 1, ..., N - 1 et $t_n = t_0 + nh$.

Cette méthode est appelée aussi la méthode de Heun.

Exemple 2.4 Le tableau suivant contient une comparaison entre la méthode d'Euler et

d'Euler améliorée

	Euler	Euler améliorée	
t	h = 0, 1	h = 0.1	Exacte
0	1.0000000	1.0000000	1.0000000
0,1	1.5000000	1.5950000	1.6090418
0, 2	2.1900000	2.4636000	2.5053299
0,3	3.1460000	3.7371280	3.8301388
0, 4	4.4744000	5.6099494	5.7942260
0,5	6.3241600	8.3697252	8.7120041
0, 6	8.9038240	12.442193	13.052522
0, 7	12.505354	18.457446	19.515518
0, 8	17.537495	27.384020	29.144880
0, 9	24.572493	40.494070	43.4979003
1, 0	34.411490	59.938223	64.897803

2.1.3 Méthode de Taylor d'ordre p

Soit $t_n = t_0 + nh$ pour n = 0, 1, ..., N - 1. un réseau régulier de pas $h = \frac{T}{N}$, soit y_n une approximation par la méthode de Taylor d'ordre p de $y(t_n)$ solution du problème de Cauchy (2.1), la méthode de Taylor d'ordre p est donnée par la formule suivante :

$$y_{n+1} = y_n + hT^{(p)}(t_n, y_n), \ \forall n = 0, 1, ..., N-1$$

avec

$$T^{(p)}(t_n, y_n) = f(t_n, y_n) + \frac{h}{2!} f'(t_n, y_n) + \frac{h^2}{3!} f^{(2)}(t_n, y_n) + \dots + \frac{h^{p-1}}{p!} f^{(p-1)}(t_n, y_n)$$

- La méthode d'Euler n'est que la méthode de Taylor d'ordre p = 1.
- Si la solution de (2.1) Φ est p + 1 fois dérivable sur $[t_0, t_0 + T]$, alors l'erreur local de cette méthode est :

 $e_{n+1} = \Phi(t_{n+1}) - y_{n+1} = \frac{h^{p+1}}{(p+1)!} \Phi^{(n+1)}(\zeta), \text{ avec } \zeta \in [t_n, t_{n+1}].$

2.2 Méthodes de Runge-Kutta

En fait les méthodes d'Euler et Euler améliorée ne sont que deux exemples de méthodes plus générales de résolution de (2.1) les méthodes dites de Runge-Kutta. Elles consistent à écrire une solution approchée de (2.1) où interviennent uniquement des évaluations de la fonction f (et pas de ses dérivées!) de manière à ce que cette solution algébrique conduise à un erreur du même ordre que celle du développement en série de Taylor de (2.1).

2.2.1 Méthode de Runge-Kutta d'ordre 2 (RK2)

Chaque méthode de Runge-Kutta consiste à écrire y(t+h), solution approchée de (2.1), sous la forme d'une combinaison linéaire de y(t) et de valeur de la fonction f de telle manière que le développement en série de Taylor de cette combinaison linéaire algébrique soit égal au développement en série de Taylor de y(t+h) jusqu'à un ordre fixé.

Bien qu'elle ne soit pas aussi employée que la méthode d'ordre 4 (RK4), la preuve de la méthode de Runge-Kutta d'ordre 2 (RK2) est plus facile à comprendre et illustre clairement les principes énoncés plus haut.

On commence en écrivant la série de Taylor de y(t+h) jusqu'aux termes d'ordre 2 :

$$y(t+h) = y(t) + hy'(t) + \frac{h^2}{2}y'' + o(h^3)$$
(2.5)

Dans cette équation, les dérivées y'(t) et y''(t) sont exprimées en fonction de f(t, y) et ses dérivés partielles. On sait (2.1) que y'(t) = f(t, y(t)), on en déduit facilement (en notant $F_x(t, x) = \frac{\partial F(t, x)}{\partial x}$) que

$$y''(t) = \frac{\partial f(t,y)}{\partial t} + \frac{\partial f(t,y)}{\partial y}y'(t) = f_t(t,y) + f_y(t,y)f(t,y(t))$$

Ces dérivée y'(t) et y''(t) sont alors substituées dans (2.5) pour donner le développement de Taylor de y(t+h) on obtient :

$$y(t+h) = y(t) + hf(t,y) + \frac{h^2}{2}f_t(t,y) + \frac{h^2}{2}f_y(t,y)f(t,y) + o(h^3)$$
(2.6)

L'idée qu'ont eu Runge et Kutta (ici pour la méthode RK2) est d'écrire une combinaison linéaire de deux valeurs de la fonction f pour exprimer y(t+h):

$$y(t+h) = y(t) + Ahf_0 + Bhf_1$$
 (2.7)

avec

$$\begin{cases} f_0 = f(t, y(t)) \\ f_1 = f(t + Ph, y(t) + Qhf_0) \end{cases}$$

Ensuite ils ont utilisé le développement en série de Taylor d'une fonction de deux

variables indépendantes pour développer f_1 :

$$f_{1} = f(t, y) + Phf_{t}(t, y) + Qhf_{y}(t, y) f(t, y) + o(h^{2})$$

en reportant les expressions de f_0 et f_1 dans (2.7), on obtient

$$y(t+h) = y(t) + (A+B)hf(t,y) + BPh^{2}f_{t} + BQh^{2}f_{y}(t,y) + o(h^{3})$$
(2.8)

Si on compare les termes de mêmes ordre en h de (2.8) et (2.6), cela donne :

$$\begin{cases} A+B=1\\ BP=\frac{1}{2}\\ BQ=\frac{1}{2} \end{cases}$$

Ainsi, avec ces valeurs pour A, B et Q, la méthode de Runge Kutta d'ordre 2 pour la solution de (2.1) aura la même erreur d'approximation que celle fournie par le développement en série de Taylor.

Comme on n'a que 3 équations algébrique pour 4 inconnues, un des coefficients peut être choisi de façon arbitraire. Faisant $A = 0 \implies B = 1, P = Q = \frac{1}{2}$, on obtient la méthode d'Euler modifiée :

$$y(t+h) = y(t) + hf\left(t + \frac{h}{2}, y + \frac{h}{2}f(t,y)\right)$$

C'est la même technique qui amène aux méthodes de Runge-Kutta d'ordre n.

La plus populaire d'entre elles, parce qu'elle assure un bon compromis entre l'effort de programmation et les performances obtenues est la méthode de Runge-Kutta d'ordre 4.

2.2.2 La méthode de Runge-Kutta d'ordre 4 (RK4)

Cette méthode fourni une solution approchée de (2.1) avec une erreur du même ordre que celle obtenue par le développement en série de Taylor d'ordre 4 de (2.1). Elle est basée sur le calcule de y_{k+1} comme suit

$$y_{k+1} = y_k + \frac{h\left(f_1 + 2f_2 + 2f_3 + f_4\right)}{6}$$

avec

le calcul explicite de (2.9) suit la même démarche que celui de RK2.

Exemple 2.5

Soit le problème (2.3). On utilise la méthode de Runge-Kutta d'ordre 4 pour calculer une approximation de solution $y = \Phi(t)$ de (2.3). On prend h = 0.2, on a alors :

$$k_1 = f(0.1) = 5, hk_1 = 1$$

 $k_2 = f(0 + 0.1, 1 + 0.5) = 6.9, hk_2 = 1.38$
 $k_3 = f(0 + 0.1, 1 + 0.69) = 7.66, hk_3 = 1.532$
 $k_4 = f(0 + 0.2, 1 + 1.532) = 10.928$

Donc :

$$y_1 = 1 + \frac{0.2}{6} [5 + 2 (6.9) + 2 (7.66) + 10.928] = 1 + 1.5016 = 2.5016$$

De la même manière on calcule les autres valeurs. Le tableau suivant contient une comparaison entre la méthode de Runge-Kutta d'ordre 4 et la méthode d'Euler améliorée.

		Runge-kutta	Euler améliorée	
t	h = 0.2	h = 0.1	h = 0.1	Exacte
0	1.0000000	1.0000000	1.0000000	1.0000000
0.1		1.6089333	1.5950000	1.6090418
0.2	2.5016000	2.5050062	2.4636000	2.5053299
0.3		3.8294145	3.7371280	3.8301388
0.4	5.7776358	5.7927853	5.6099494	5.7942260
0.5		8.7093157	8.3697252	8.7120041
0.6	12.997178	13.047713	12.442193	13.052522
0.7		19.507148	18.457446	19.515518
0.8	28.980768	29.130609	27.384020	29.144880
0.9		43.473954	40.494070	43.497903
1.0	64.441579	64.858107	59.938223	64.897803

Chapitre 3

Résolution des EDO par les méthodes numériques multipas

Considérons à nouveau le problème de Cauchy suivant :

$$\begin{cases} y' = f(t, y) \\ y(t_0) = y_0 \end{cases}; t \in [t_0, t_0 + T] \end{cases}$$

L'objectif ici est, lors de l'approximation de la solution de problème sur un réseau $t_0 < t_1 < ... < t_n < t_{n+1} < ... < t_N$, d'utiliser les informations déjà obtenues. On appelle méthode à k pas une méthode permettant de calculer y_{n+1} au point t_{n+1} en utilisant les k valeurs précédentes $y_n, y_{n-1}, ..., y_{n-k+1}$ (valeurs qui doivent être déjà calculées) [6].

Soit Φ la solution de problème de Cauchy (2.1). En intégrant sur $[t_n, t_{n+1}] \subset [t_0, t_0 + T]$, on a :

$$\Phi(t_{n+1}) = \Phi(t_n) + \int_{t_n}^{t_{n+1}} f(t, \Phi(t)) dt$$
$$= \Phi(t_n) + \int_{t_n}^{t_{n+1}} \Phi'(t) dt$$

L'idée de base ici est d'interpoler $\Phi'(t)$ par un polynôme $p_k(t)$ par certains points de l'ensemble $(t_0, y_0), (t_1, y_1), ..., (t_n, y_n)$.

On remplace $\Phi(t_n)$ par y_n et $\Phi(t_{n+1})$ par y_{n+1} , on obtient :

$$y_{n+1} \approx y_n + \int_{t_n}^{t_{n+1}} p_k(t) dt$$

On a deux classes de méthodes multipas selon que l'interpolation de $\Phi'(t)$ utilise ou

non le point (t_{n+1}, y_{n+1}) qui est, pour l'heure, inconnue.

- Les méthodes explicites : n'utilisent pas le point (t_{n+1}, y_{n+1}) .
- Les méthodes implicites : par contre qui utilisent le point (t_{n+1}, y_{n+1}) .

Pour les méthodes à k pas, l'interpolant p_k est un polynôme de degré inférieur à k.

Nous avons citerons quelques exemples dans famille d'Adams.Il s'agit des méthodes d'Adams-Bashforth pour les explicites et des méthodes d'Adams-Moulton pour les implicites.

3.1 Méthodes d'Adams-Bashforth

On a $y_{n+1} = y_n + \int_{t_n}^{t_{n+1}} p_k(t) dt$

En les méthodes d'Adams, $p_k(t)$ le polynôme d'interpolation de $\Phi'(t)$ est de degré k-1. Supposons par exemple que pour calculer $p_k(t)$ on a besoin uniquement de points (t_n, y_n) , (t_{n-1}, y_{n-1}) ; on parle alors d'un pas k = 2.

Méthode d'Adams-Bashforth à 2 pas

Alors : $p_2(t) = At + B$, comme p_2 est une approximation de Φ' , alors on a : $p_2(t_n) = f(t_n, y_n)$ et $p_2(t_{n-1}) = f(t_{n-1}, y_{n-1})$. A et B doivent satisfaire l'équation $At_n + B = f(t_n, y_n)$ et $At_{n-1} + B = f(t_{n-1}, y_{n-1})$. On trouve :

$$A = \frac{f(t_n, y_n) - f(t_{n-1}, y_{n-1})}{h}, B = \frac{f(t_{n-1}, y_{n-1})t_n - f(t_n, y_n)t_{n-1}}{h}$$

Posons : $f(t_j, y_j) = f_j$ pour un entier j, alors $A = \frac{f_n - f_{n-1}}{h}$, $B = \frac{f_{n-1}t_n - f_n t_{n-1}}{h}$, donc

$$y_{n+1} - y_n = \int_{t_n}^{t_{n+1}} (At + B) dt$$

= $\frac{A}{2} (t_{n+1}^2 - t_n^2) + B(t_{n+1} - t_n)$
= $\frac{3h}{2} f_n - \frac{h}{2} f_{n-1}$

$$y_{n+1} = y_n + \frac{3h}{2}f(t_n, y_n) - \frac{1}{2}hf(t_{n-1}, y_{n-1})$$

Cette dernière équation est appelée la formule d'Adams-Bashforth à 2 pas.

On peut conclure comme suit :

Soit $t_n = t_0 + nh$ pour n = 0, ..., N un réseau régulier de pas $h = \frac{T}{N}$. Soit y_n une approximation par la méthode d'Adams-Bashforth à 2 pas de $y(t_n)$, solution de problème

de Cauchy. la méthode d'Adams-Bashforth à 2 pas est donnée par :

$$\begin{cases} y_0 = y(t_0) \\ y_1 = y(t_1) \\ \forall n = 1, ..., N - 1 \\ y_{n+1} = y_n + \frac{3h}{2}f(t_n, y_n) - \frac{1}{2}hf(t_{n-1}, y_{n-1}) \end{cases}$$

Si la solution est 3 fois dérivable sur $[t_0, t_0 + T]$, alors l'erreur local est :

$$e_{n+1} = \Phi(t_{n+1}) - y_{n+1} = \frac{5}{12}h^3\Phi^{(3)}(\zeta),$$

avec $\zeta \in]t_n, t_{n+1}[$.

Méthode d'Adams-Bashforth à 3 pas

Soit $t_n = t_0 + nh$ pour n = 0, ..., N un réseau régulier de pas $h = \frac{T}{N}$. Soit y_n une approximation par la méthode d'Adams-Bashforth à 3 pas de $y(t_n)$, solution de problème de Cauchy. la méthode d'Adams-Bashforth à 3 pas est donnée par :

$$\begin{cases} y_0 = y(t_0) \\ y_1 = y(t_1) \\ y_2 = y(t_2) \\ \forall n = 2, ..., N - 1 \\ y_{n+1} = y_n + \frac{h}{12} \left[23f(t_n, y_n) - 16f(t_{n-1}, y_{n-1}) + 5f(t_{n-2}, y_{n-2}) \right] \end{cases}$$

Si la solution est 4 fois dérivable sur $[t_0, t_0 + T]$, alors l'erreur local est :

$$e_{n+1} = \Phi(t_{n+1}) - y_{n+1} = \frac{3}{8}h^4 \Phi^{(4)}(\zeta),$$

avec $\zeta \in]t_n, t_{n+1}[$.

3.2 Méthodes d'Adams-Moulton

Méthode d'Adams-Moulton à 2 pas

Soit $t_n = t_0 + nh$ pour n = 0, ..., N un réseau régulier de pas $h = \frac{T}{N}$. Soit y_n une approximation par la méthode d'Adams-Moulton à 2 pas de $y(t_n)$, solution du problème

de Cauchy. La méthode d'Adams-Moulton à 2 pas est donnée par :

$$\begin{cases} y_0 = y(t_0) \\ y_1 = y(t_1) \\ \forall n = 1, \dots, N-1 \\ y_{n+1} = y_n + \frac{1}{12}h \left[5f(t_{n+1}, y_{n+1}) + 8f(t_n, y_n) - f(t_{n-1}, y_{n-1}) \right] \end{cases}$$

Si la solution est 4 fois dérivable sur $[t_0, t_0 + T]$, alors l'erreur local est :

$$e_{n+1} = \Phi(t_{n+1}) - y_{n+1} = -\frac{1}{24}h^4 \Phi^{(4)}(\zeta) + \frac{1}{24}h^4 \Phi^{(4)}(\zeta) + \frac{1}{24}h^$$

avec $\zeta \in]t_n, t_{n+1}[$.

Méthode d'Adams-Moulton à 3 pas

Soit $t_n = t_0 + nh$ pour n = 0, ..., N un réseau régulier de pas $h = \frac{T}{N}$. Soit y_n une approximation par la méthode d'Adams-Moulton à 3 pas de $y(t_n)$, solution du problème de Cauchy. La méthode d'Adams-Moulton à 3 pas est donnée par :

$$\begin{cases} y_0 = y(t_0) \\ y_1 = y(t_1) \\ y_2 = y(t_2) \\ \forall n = 2, ..., N - 1 \\ y_{n+1} = y_n + \frac{1}{24}h \left[9f(t_{n+1}, y_{n+1}) + 19f(t_n, y_n) - 5f(t_{n-1}, y_{n-1}) + f(t_{n-2}, y_{n-2})\right] \end{cases}$$

Remarque 3.1

En pratique, une méthode multipas ne s'utilise pas seule, il est nécessaire de faire appel à une méthode à un pas de précision de Runge Kutta sont souvent utilisées à cette fin.

Une méthode multipas implicite est souvent utilisée en association avec une méthode explicite; on obtient une méthode prédiction-correction.

3.3 Méthodes prédiction-correction

Dans une méthode prédiction-correction on utilise une combinaison d'une méthode explicite, le prédicteur et d'une méthode implicite de même ordre, le correcteur.

La méthode explicite prédit une approximation que vient corriger la méthode implicite. On peut citer les exemples suivants :

Exemple 3.2

Dans cet exemple on utilise la méthode d'Euler comme prédicteur et la méthode d'Euler améliorée implicite est la correctrice. Cela donne :

$$\begin{cases} y(t_0) = y_0 \\ \forall n = 0, ..., N - 1 \\ \overline{y}_{n+1} = y_n + hf(t_n, y_n) \\ y_{n+1} = y_n + \frac{h}{2}(f(t_n, y_n) + f(t_{n+1}, \overline{y}_{n+1})) \end{cases}$$

Exemple 3.3

En combinant la méthode d'Adams-Bashforth à 3 pas à la méthode d'Adams-Moulton à 2 pas, on obtient :

$$\begin{cases} y(t_0) = y_0 \\ y(t_1) = y_1 \\ y(t_2) = y_2 \\ \forall n = 2, ..., N - 1 \\ \overline{y}_{n+1} = y_n + \frac{h}{12} \left[23f(t_n, y_n) - 16f(t_{n-1}, y_{n-1}) + 5f(t_{n-2}, y_{n-2}) \right] \\ y_{n+1} = y_n + \frac{h}{12} \left[5f(t_{n+1}, \overline{y}_{n+1}) + 8f(t_n, y_n) - f(t_{n-1}, y_{n-1}) \right] \end{cases}$$

Pour connaitre la méthode la plus efficace parmi les méthodes proposées, on donne un exemple simple d'un problème de Cauchy :

$$\begin{cases} x'(t) = \cos(t) \\ x(0) = 0 \end{cases}$$
(3.1)

qui a la solution analytique exacte $x(t) = \sin(t)$.

On résoudre ce problème par des méthodes numériques différentes pour un pas h = 0.9et représente la solution par chaque méthode graphiquement.D'après (3-1) on remarque que le graphe de solution calculée par RK4 est la plus proche de la solution exacte.

FIG. 3-1 – Représentation graphique de la solution exacte et la solution approchée par quatre méthodes du problème (3.1).

Chapitre 4

Applications sur quelques systèmes

Les systèmes non linéaires ont une grande importance dans les recherches de plusieurs filières de sciences naturelles, parce que ces systèmes sont riches en dynamiques et en particulier les systèmes chaotiques qui admettent une sensibilité aux conditions initiales.

Dans ce chapitre, on propose d'étudier deux systèmes concernant deux phénomènes différents, le premier est un système financier, et l'autre est le système de Lorenz (atmo-sphérique).

4.1 Système financier

Le modèle dynamique de finance est un système composé de trois équations différentielles de 1^{er} ordre, le modèle décrit la variation de trois variables en fonction de temps, qui sont :

- x: La moyenne d'intérêt.
- y: La demande d'investissement
- z: L'indice des prix.

Le système est donné par :

$$\begin{cases} x' = z + (y - a)x \\ y' = 1 - by - x^2 \\ z' = -x - cz \end{cases}$$
(4.1)

où $a \ge 0$ est le montant d'épargne, $b \ge 0$ le coût d'investissement, $c \ge 0$ l'élasticité de demande de marchés commerciaux.

On suppose que a est un paramètre de contrôle et b = 0.1, c = 1.

Analyse du système

- Si $a \ge 9$ le système (4.1) a un seul point fixe qui est : $p_1 = (0, 10, 0)$

L'étude qualitative montre que p_1 est stable, dans les figures (4-1, 4-2) nous avons représenté trois trajectoires (trois conditions initiales différentes) pour a = 9.1 en utilisant les méthodes de Runge-Kutta d'ordre 4 et d'Adams-Bashforth à 2 pas.

FIG. 4-1 – Evolution temporelle et portrait de phase par RK4.

FIG. 4-2 – Evolution temporelle et portrait de phase par AB₂

Les résultats obtenus par les deux méthodes sont très proches et montrent que les trajectoires convergentes vers le point fixe p_1 . On peut comparer entre ces deux méthode en variant le pas h, lorsque h = 0.18, la méthode RK4 donne des résultats conformes à l'étude théorique mais la méthode AB₂ donne des résultats non conformes à l'étude théorique, ce qui montre l'efficacité de la méthode RK4.

- Si a < 9 le système admet trois points fixes : $p_1 = (0, 10, 0)$, $p_{2,3} = \left(\pm \sqrt{\frac{9-a}{10}}, a+1, \mp \sqrt{\frac{9-a}{10}}\right)$ qui sont instables.
- Les figures (4-3,4-4) sont tracées en utilisant les méthodes numériques RK4 et AB₂ qui donnent les mêmes résultats de l'étude qualitative pour la stabilité des points fixes, et les trajectoires convergent vers un attracteur chaotique.

FIG. 4-3 – Evolution temporelle et portrait de phase par RK4.

FIG. 4-4 – Evolution temporelle et portrait de phase par AB₂.

4.2 Attracteur de Lorenz

Les équations de Lorenz sont une approximation des équations de Navier-Stokes de l'hydrodynamique et simulent l'évolution d'un fluide dans un domaine de forme cubique chauffé par le bas qui sont données par :

$$\begin{cases} x'(t) = -10x + 10y \\ y'(t) = \alpha x - y - xz , \ \alpha \in \mathbb{R}^*_+ \\ z'(t) = xy - \frac{8}{3}z \end{cases}$$
(4.2)

L'étude qualitative montre que ce système admet trois points fixes $p_1 = (0,0,0)$, $p_2 = \left(\sqrt{\frac{8(\alpha-1)}{3}}, \sqrt{\frac{8(\alpha-1)}{3}}, \alpha-1\right)$, $p_2 = \left(-\sqrt{\frac{8(\alpha-1)}{3}}, -\sqrt{\frac{8(\alpha-1)}{3}}, \alpha-1\right)$ Pour certaines valeurs du paramètre α le système (4.2) exhibe un "attracteur étrange",

Pour certaines valeurs du parametre α le système (4.2) exhibe un "attracteur etrange", solution fortement dépendante aux conditions initiales et intimement liée au phénomène de chaos, on va appliquer les méthodes d'Euler et de prédiction-correction pour la résolution.

L'étude sera restreinte autour du point fixe $p_1 = (0, 0, 0)$, qui est stable si est seulement si $0 < \alpha < 1$. On trace les trajectoires du système par les méthodes d'Euler et de prédiction-correction (le prédicteur est Euler explicite, et le correcteur est Euler améliorée implicite) pour $\alpha = 0.9$, avec trois conditions initiales $Y_0^1(0.02, 0, 0.01)$, $Y_0^2(0.01, 0.01, 0)$, $Y_0^3(0.01, 0, 0.01)$.

FIG. 4-5 – Evolution temporelle et portrait de phase par la méthode d'Euler

FIG. 4-6 – Evolution temporelle et portrait de phase par PECE.

D'après les figures (4-5,4-6), on trouve que les résultats obtenus par les méthodes d'Euler et de PECE sont très proches, et conformes à l'étude qualitative (les trajectoires convergent vers le point fixe p_1).

Dans le cas où p_1 est instable ($\alpha \ge 1$), on trace les trajectoires du système pour $\alpha = 7.6$ par les deux méthodes précédentes dans les figures (4-7,4-8) :

FIG. 4-7 – Evolution temporelle et portrait de phase par la méthode d'Euler.

FIG. 4-8 – Evolution temporelle et portrait de phase par la méthode PECE.

De même les résultats obtenus par l'étude numérique sont identiques à celles obtenus par l'étude qualitative.

Conclusion Générale

Dans ce mémoire, l'étude numérique des équations différentielles a été présenté dont le but est de trouver une solution approchée du problème de Cauchy sur un réseau régulier de pas constant h. Pour cette raison, on a exposé un certain nombre des méthodes permettant de calculer cette solution.

Nous avons vu aussi que la précision du solutions dépend de la valeur du pas h, parce que l'erreur est proportionnel avec h, et la méthode la plus efficace est celle qui donne une solution proche de la solution exacte avec moins des coûts (dans le temps de calcul), et parmi les méthodes qu'on a proposé on trouve que la méthode de Runge-Kutta d'ordre 4 est la meilleure.

D'après les applications qu'on a fait, nous avons trouvé que l'étude numérique est très conforme à l'étude qualitative dans plusieurs cas surtout lorsque h est proche de 0.

Annexe (Programmation)

Dans cette section, nous introduisons des algorithmes en Matlab pour quelques méthodes numériques qu'on a proposé.

Le fichier script (Programme principal)

```
clc
clear all
close all
\% On fixe l'intervalle du temps
t0=0;tf=100;% ti=temps initial, tf=temps final
% On fixe le pas h
h=0.01;
% Appel des fonctions contenant les algorithmes des méthodes utilisées
[T1,Y1] = RK4(@finance,[t0, tf]',[1 11 0],h);
[T2, Y2] = ADAMSB(@finance, [t0, tf]', [1 11 0], h);
[T3,Y3] = Euler(@finance,[t0, tf]',[1 11 0],h);
[T4, Y4] = PECE(@finance, [t0, tf]', [1 11 0], h);
% Representation graphique de la solution par RK4
figure(1)
subplot(1,3,1);
plot(T1,Y1(1,:)); grid on
xlabel('t');ylabel('x');
subplot(1,3,2);
plot(T1,Y1(2,:)); grid on
xlabel('t');ylabel('y');
subplot(1,3,3)
plot(Y1(1, :), Y1(2, :))
xlabel('x');ylabel('y');
\% Representation graphique de la solution par ADAMSB
```

```
figure(2)
subplot(1,3,1);
plot(T2, Y2(1, :)); grid on
xlabel('t');ylabel('x');
subplot(1,3,2);
plot(T2, Y2(2, :)); grid on
xlabel('t');ylabel('y');
subplot(1,3,3)
plot(Y2(1, :), Y2(2, :))
xlabel('x');ylabel('y');
% Representation graphique de la solution par Euler
figure(3)
subplot(1,3,1);
plot(T3, Y3(1, :)); grid on
xlabel('t');ylabel('x');
subplot(1,3,2);
plot(T3,Y3(2,:)); grid on
xlabel('t');ylabel('y');
subplot(1,3,3)
plot(Y3(1, :), Y3(2, :))
xlabel('x');ylabel('y');
% Representation graphique de la solution par PECE
figure(4)
subplot(1,3,1);
plot(T4, Y4(1, :)); grid on
xlabel('t');ylabel('x');
subplot(1,3,2);
plot(T4, Y4(2, :)); grid on
xlabel('t');ylabel('y');
subplot(1,3,3)
plot(Y4(1, :), Y4(2, :))
xlabel('x');ylabel('y');
```

Le fichier des fonctions (les sous-programmes)

Méthode RK4

function [T,Z] = RK4(fdefun,tspan,Y0,h)

```
% fdefun : La fonction qui évalue la partie droite du système différentiel
% tspan : Le vecteur qui spécifie l'intervalle d'integration [t0,tf]
% Y0 : Le vecteur des conditions initiales
n=length(Y0);
T = tspan(1) :h :tspan(end);
Nstep=length(T)-1;
Z(:,1) = Y0(:);
K=zeros(n,4);
for j=1 :Nstep
K(:,1)= feval(fdefun, T(j), Z(:,j));
K(:,2)= feval(fdefun, T(j)+h/2, Z(:,j)+h*K(:,1)./2);
K(:,3)= feval(fdefun, T(j)+h/2, Z(:,j)+h*K(:,2)./2);
K(:,4)= feval(fdefun, T(j)+h, Z(:,j)+h*K(:,3));
Z(:,j+1)=Z(:,j)+(K(:,1)+2*K(:,2)+2*K(:,3)+K(:,4)).*(h/6);
end
```

Méthode AB_2

```
function [T,Z] = ADAMSB(fdefun,tspan,Y0,h)
n=length(Y0);
T=tspan(1) :h :tspan(end);
Nstep=length(T)-1;
Z(:,1)=Y0(:);
f1=feval(fdefun, T(1), Z(:,1));
Z(:,2)=Z(:,1)+h*f1;
Fn=zeros(n,1);
Fm=zeros(n,1);
for j=2 :Nstep
Fm(:,1)=feval(fdefun, T(j-1), Z(:,j-1));
Fn(:,1)=feval(fdefun, T(j), Z(:,j));
Z(:,j+1)=Z(:,j)+(h/2)*(3*Fn(:,1)-Fm(:,1));
end
```

Méthode d'Euler

function [T,Z] = Euler(fdefun,tspan,Y0,h) n=length(Y0); T=tspan(1) :h :tspan(end);

```
\begin{split} Nstep = & \text{length}(T)-1 ; \\ Z(:,1) = & Y0(:) ; \\ Fn = & \text{zeros}(n,1) ; \\ \text{for } j = & 1 : Nstep \\ Fn(:,1) = & \text{feval}(\text{fdefun, } T(j), \ Z(:,j)) ; \\ Z(:,j+1) = & Z(:,j) + h^* Fn(:,1) ; \\ end \end{split}
```

Méthode PECE

```
function [T,Z]=PECE(fdefun,tspan,Y0,h)
n = length(Y0);
T = tspan(1) : h : tspan(end);
Nstep=length(T)-1;
X(:,1)=Y0(:); Z(:,1)=Y0(:);
Fm = zeros(n,1);
Fn = zeros(n,1);
for j=1 :Nstep
Fm(:,1)=feval(fdefun, T(j), X(:,j));
X(:,j+1)=X(:,j)+h*Fm(:,1);
Fn(:,1) = feval(fdefun, T(j+1), X(:,j+1));
Z(:,j+1)=Z(:,j)+h*Fn(:,1);
end
%Exemple : système financier
function dy = finance(t,x)
% La partie droite de l'équation différentielle
dy = zeros(3,1);
a=3;
dy(1) = x(3) + (x(2)-a)*x(1);
dy(2) = 1 - 0.1 \times (2) - x(1)^{2};
dy(3) = -x(1) - x(3);
```

Bibliographie

- J. Demailly. Analyse numérique et équations différentielles. EDP Sciences, p 343, France, 2006
- [2] K. Bencharif. caractérisation de comportements de systèmes dynamiques non linéaires, université de constantine. Algérie
- [3] M. Abd-Elouahab, N. Hamri, J. Wang. Chaos control of a fractional-order financial system, Math Prob in Engineering p-1-18, 2010
- [4] S. ALJBAAE. Méthode deRunge-Kuttas. Observatoire de Paris, M2 Recherche, p 29, 2008-2009
- [5] W. Boyce, R. Diprima. Elementary differentiel equations and boundary value problems
- [6] www.transfer 32 obj. refer. org/agoudjou/resources/edo 03. PDF