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Introduction

The first definition of the fractional derivative was presented by Liouville and

Riemann at the end of the 19th century, however, the notion of non-integer deriva-

tive and integral, as a generalization of the traditional integer order differential and

integral calculus was mentioned already in 1695 by Leibniz and LHospital.

Fractional differential equations (FDEs) have recently been discovered in a variety

of disciplines, including physics, chemistry, and engineering [21,25]. Since most frac-

tional differential equations do not have exact analytical solutions, approximation

and numerical techniques are used such as the Adomians decomposition method

(ADM) [2], variational iteration method (VIM) [22], differential transform method

[15] and homotopy perturbation method (HPM) [1] have been used for solving a

wide range of problems.

One of the numerical methods that has been applied to solve fractional differential

equations is the reproducing kernel Hilbert space method (RKHS). Three mathe-

maticians from Berlin initially introduced the replicating kernels concept: (Szeg,

1921), (Bergman, 1922), and (Bochner, 1922).

In 1935, the positive definite kernels was examined by E, Moore in his general anal-

ysis named positive Hermitian mateix. N. Aronszajn used the term ”Reproducing
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kernel function” in 1950 and established the existence and uniqueness of a reproduc-

ing kernel Hilbert space. Cui proved in 1986 that W 1
2 [a, b] is a Hilbert space with

a reproducing kernel function that can be stated by a finite term, and as a result,

the application of reproducing kernel theory started to spread throughout various

fields. S. Saitoh presented the general theory of reproducing kernel Hilbert spaces

and its numerous applications in 1988.

Numerous researchers have used the RKHS method in recent years to obtain the

analytical approximate solutions to many problems, including regular and singular

initial value problems (IVPs), regular, singular, singular weakly, singular periodic

and singularly perturbed boundary value problems BVPs, system of regular and

singular IVPs and BVPs, regular and singular integral equations (IEs), partial dif-

ferential equations (PDE) and inverse problems in PDEs. the Reproducing kernel

theory also has a significant role in statistics and probability [6].

In this thesis, we apply the RKHS method to give approximate solutions for lin-

ear and nonlinear differential equations of fractional order. The numerical results

illustrate that the method is quite accurate and efficient for solving fractional dif-

ferential equations. The analytical solution is represented in the form of series in

the reproducing kernel space and the approximate solution un(x) is obtained by the

n−term intercept of the analytical solution and is proved to converge to the analyt-

ical solution.

This thesis is organized as follows: In Chapter one, we introduce some fundamental

concepts and definitions of functional analysis and fractional calculus. In Chapter

Two, we give basic concepts, definition and theorems of RKHS, then we present

the reproducing kernel function by re-defining the inner product of a reproducing
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kernel space in order to obtain the analytical approximate solution for a general

form of ordinary differential equations (ODEs). Also, we describe the analysis of

the RKHS method and introduce an effective algorithm based on this method. In

Chapter three, we apply the RKHSM to approximate the solution of IVP fractional

differential equations of first order, IVP and BVP fractional differential equations

of second order. Various numerical example are presented to illustrate the efficiency

and the accuracy of the method. The thesis end in chapter four with conclusion and

future recommendations.
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Chapter 1

Preliminaries

In this chapter, some basic concepts in functional analysis and fractional calculus

will be presented.

1.1 Functional Analysis

The study of vector spaces that possess a limit-related structure such as inner

product, norm, topology, etc., and the linear functions that satisfy these structures

in a suitable manner is the essence of functional analysis.

The majority of the definitions and characteristics in this section have been obtained

from [17].

1.1.1 Normed Spaces

Definition 1.1.1. Let X be a vector space over K = R or C. A norm on X is a

function ‖.‖ : X −→ [0,∞) such that

1. For all x ∈ X, ‖x‖ ≥ 0, if x ∈ X, then ‖x‖ = 0 iff x = 0 (Positive definite),

2. For all α ∈ R (or C) and for all x ∈ X, ‖αx‖ = |α| ‖x‖,
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3. For all x, y ∈ X, ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality).

Definition 1.1.2. A vector space with norm defined on it is called normed space.

Example 1.1.1. 1. R is a vector space over R, and if we define ‖.‖ : R −→

[0,∞) by ‖x‖ = |x|, x ∈ R, then it becomes a normed space.

2. Rn is a vector space over R, and let ‖x‖2 =
(∑n

i=1 |xi|
2) 1

2 , x = [x1, . . . , xn] ∈

Rn, then Rn is a normed space.

In a normed space, we possess a concept of ”distance” between vectors, and we

can state when two vectors are approximate or distant. Hence, we can talk about

convergent sequences and Cauchy sequences in a normed space.

Definition 1.1.3. Let (xn)n∈N be a sequence in X, and let x ∈ X, the sequence

(xn)n∈N converges to x if

∀ε > 0, ∃N ∈ N ∀n ∈ N satisfying n ≥ N, ‖xn − x‖ ≤ ε. (1.1)

Note that (1.1) says that the real sequence (‖xn − x‖)n∈N converges to 0, i.e

limn→∞ ‖xn − x‖ = 0.

Example 1.1.2. The sequence (xn)n∈N is called a Cauchy sequence if

∀ε > 0, ∃N ∈ N such that ∀ m, n ∈ N satisfying m, n ≥ N, ‖xm − xn‖ < ε.

(1.2)
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Remark 1.1.1. Every convergent sequence is a Cauchy sequence, since

‖xm − xn‖ ≤ ‖xm − x‖+ ‖x− xn‖ .

Definition 1.1.4. A normed space X is called complete ( or Banach space), if every

Cauchy sequence (xn)n∈N is converges in X.

1.1.2 Inner Product Spaces

Definition 1.1.5. Let X be a vector space, an inner product on X is a mapping

〈.〉 : X ×X −→ K such that ∀x, y, z ∈ X and ∀α ∈ K we have

1. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉,

2. 〈αx, y〉 = α 〈x, y〉,

3. 〈x, y〉 = 〈y, x〉,

4. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0⇔ x = 0.

An inner product on X defines a norm on X given by

‖x‖ =
√
〈x, x〉.

Definition 1.1.6. A Hilbert space H is a complete inner product space.

1.1.3 Continuous Maps

Definition 1.1.7. Let X and Y be vector spaces over K (K = R or C) and let D(T )

be a subspace of X.
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A map

T : D(T ) ⊂ X −→ Y such that : T (αx+ βy) = αT (x) + βT (y),

is called linear operator. If D(T ) = X, then we write T : X −→ Y

Definition 1.1.8. Let X and Y be two normed spaces, the linear operator

T : D(T ) ⊂ X −→ Y is said to be bounded if there exist a real number C > 0 such

that

‖Tx‖Y ≤ C ‖x‖X , ∀x ∈ D(T ). (1.3)

Definition 1.1.9. Let X and Y be two normed spaces where D(T ) ⊂ X, and let

T : D(T ) −→ Y be any operator (not necessarely linear), we say that T is continuous

at x0 ∈ D(T ) if

∀ε > 0, ∃δ > 0 such that ‖Tx − Tx0‖ < ε,∀x ∈ D(T ) satisfying ‖x− x0‖ < δ.

(1.4)

Definition 1.1.10. Let X be a vector space and K (K = R or C) be a scalar field,

the linear operator f : X −→ K is caled a linear functional.

Note that, a bounded linear functional f is a bounded linear oparator i.e

∃c ∈ R such that ∀x ∈ D(T ), |f(x)| ≤ c ‖x‖ .

Theorem 1.1.1. [26] (Riesz’s Theorem) If f is a bounded linear functional on

a Hilbert space H , then there exists some y ∈ H such that for every x ∈ H we

have f(x) = 〈x, y〉. Where y is uniquely determined by f and has norm ‖f‖ = ‖y‖.
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Definition 1.1.11. Let T be a bounded linear operator from a Hilbert space H1 to

another H2. Then there is a bounded operator T ∗ : H2 −→H1 called the adjoint of

T such that

〈Tx, y〉 = 〈x, T ∗y〉 , ∀x ∈H1 and y ∈H2.

We say that T is self-adjoint if T = T ∗.

Definition 1.1.12. Let Ω be a domain in Rn, we refer to Lp(Ω), 1 ≤ p < ∞, the

linear space of pth order of integrable functions u on Ω and to L∞(Ω) as the linear

space of essentially bounded functions.

The spaces Lp(Ω), 1 ≤ p <∞, and L∞(Ω) are Banach spaces with respect to the

norms ‖u‖Lp =
(∫

Ω
|u(x)|p dx

) 1
p <∞, and ‖u‖L∞ = esssup

x∈Ω
|u(x)| , respectively.

Note that for p = 2, the space L2(Ω) =
{

u :
(∫

Ω
|u(x)|2 dx

) 1
2 <∞

}
is a Hilbert

space with respect to the inner product 〈u, v〉L2 =
∫

Ω
u(x)v(x)dx.

Definition 1.1.13. A function u : [a, b] −→ R is called absolutely continuous

(Abs.C) , if for every positive ε, there exists δ such that for any finite set of

(x1, y1), (x2, y2), · · · , (xk, yk)(⊂ [a, b]) satisfies
∑k

i=1 |yi − xi| < δ then

k∑
i=1

|u(yi)− u(xi)| < ε.
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1.2 Fractional Calculus

1.2.1 Special Functions

Euler Gamma Function

Definition 1.2.1. [25] The Gamma function (or the factorial function) is defined

as follows

Γ(α) =

∫ ∞
0

tα−1e−tdt, α > 0. (1.5)

The integral in (1.5) is uniformly convergent for all α ∈ [a, b] where 0 < a ≤ b <

∞, so Γ(α) is a continuous function for all α > 0. We can also define Gamma as

follows

Γ(α) = lim
n→∞

n!nα

α(α + 1)(α + 2) · · · (α + n)
. (1.6)

Now, we present some properties of the Gamma function as follows

1. Γ(α + 1) = αΓ(α), α ∈ R+,

2. Γ(n+ 1) = n(n− 1)!, n ∈ N,

3. Γ(1) = 1,

4. Γ(1
2
) =
√
π.

From (2), we conclude that Gamma function is the extension of the factorial.
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Beta Function

Definition 1.2.2. [25] Also known as Euler’s first integral, it is defined by two-

parameter integral

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt, α, β ∈ R+.

We can express Beta in term of Gamma as follows

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
. (1.7)

From (1.7) it is evident that

B(α, β) = B(β, α).

1.2.2 Fractional Integration and Differentiation

Unlimited focus has recently been given to the theory of fractional calculus.

Several forms of fractional integrals were introduced and extensively studied such

as the fractional integral of Riemann-Liouville which is defined by

Definition 1.2.3. [14] Let α ∈ R+, the operator I α
a defined on L1[a, b] by

I α
a f(x) =

1

Γ(α)

∫ x

a

(x− s)α−1f(s)ds, (1.8)

for a ≤ x ≤ b, is called the Riemann-Liouville fractional integral operator of order

α, with the identity operator I 0
a = 1 for α = 0.
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In fractional integral, one of the most important operator properties is also valid

as follows

Theorem 1.2.1. [14] Let α, β ≥ 0 and f ∈ L1[a, b], then

I α
a I β

a f = I α+β
a f,

holds almost everywhere on [a, b]. If additionaly f ∈ C[a, b] or α+β ≥ 1, the identity

holds everywhere on [a, b].

Corollary 1.2.1. [14] Under the assumptions of the previous theorem,

I α
a I β

a f = I β
a I α

a f.

Example 1.2.1. Concider the following examples

1. Let f(x) = (x− a)λ for some λ > 1 and α > 0, then

I α
a f(x) =

1

Γ(α)

∫ x

a

(s− a)λ(x− s)α−1ds,

by the substitution s = a+ τ(x− a):

I α
a f(x) = 1

Γ(α)
(x− a)α+λ

∫ 1

0
τλ(1− τ)α−1dτ,

= Γ(λ+1)
Γ(α+λ+1)

(x− a)α+λ.
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2. Let f(x) = C, such that C is arbitrary constant then

I α
a f(x) = 1

Γ(α)

∫ x
a

(x− s)α−1Cds = C
Γ(α)

∫ x
a

(x− s)α−1ds,

= C
Γ(α+1)

(x− a)α.

Based on the Riemann-Liouville fractional integral, the Riemann-Liouville frac-

tional derivative is defined as follows

Definition 1.2.4. [14] Let α > 0 and suppose m such that m − 1 < α ≤ m, then

the Riemann-Liouville fractional derivative of order α is defined by

Dα
a f(x) = DmI m−α

a f(x),

= 1
Γ(m−α)

(
d
dx

)m ∫ x
a

(x− s)m−α−1f(s)ds,

for all a ≤ x ≤ b. For α = 0, we set D0
a = I the identity operator.

Lemma 1.2.1. [14] Let α ∈ R+, and for all m ∈ N such that m > α we get

Dα
a = DmI m−α

a .

Theorem 1.2.2. [14] Suppose that α1, α2 ≥ 0, and let ψ ∈ L1[a, b] and f =

I α1+α2ψ then

Dα1
a Dα2

a f = Dα1+α2
a f.

Example 1.2.2. Let f(x) = (x− a)λ, for λ > −1 and let α > 0, then

Dα
a f(x) =

Γ(λ+ 1)

Γ(λ+ 1− α)
(x− a)λ−α.
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To prove this, let m ∈ N such that m = dαe, then

Dα
a f(x) = Dα

a (x− a)λ,

= DmJ m−α
a (x− a)λ,

= Γ(λ+1)
Γ(λ+1−α)

(x− a)λ−α.

Remark 1.2.1. The property Dα
a Dβ

a f = Dα+β
a f = Dβ

aDα
a f is not satisfies in both

equalities.

Theorem 1.2.3. [14] Let α ≥ 0, then for all f ∈ L1[a, b] we have

Dα
a I α

a f = f.

Almost everywhere.

Concerning the relation between Riemann-Liouville integral and derivative, we

present the following theorem.

Theorem 1.2.4. [14] Let α > 0, if there is a function ψ ∈ L1[a, b] such that

f = I α
a ψ then

I α
a Dα

a f = f.

Almost everywhere.

Theorem 1.2.5. [14] Let α > 0 and m−1 < α ≤ m, suppose f such that I m−α
a f ∈

Am[a, b] then

I α
a Dα

a f(x) = f(x)−
m−1∑
k=0

(x− a)α−k−1

Γ(α− k)
lim
q→a+

Dm−k−1I m−α
a f(q).
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In particular, if 0 < α < 1 we get

I α
a Dαa f(x) = f(x)− (x− a)α−1

Γ(α)
lim
q→a+

I 1−α
a f(q).

M. Caputo introduced a new interpretation of a fractional derivative in 1967,

which is referred to as the Caputo fractional derivative. The most significant aspect

of his work was demonstrating its correlation with fractional Riemann-Liouville

differential and integral operators.

Definition 1.2.5. [14] Let α ≥ 0, and m− 1 < α ≤ m, then we define the Caputo

fractional differential operator Dα
∗a of order α as follows

Dα
∗af = I m−α

a Dmf

= 1
Γ(m−α)

∫ x
a

(x− s)m−α−1( d
ds

)mf(s)ds,

for all a ≤ x ≤ b.

Example 1.2.3. Let f(x) = (x− a)λ for some λ ≥ 0, then

Dα
∗a(x− a)λ = I m−α

a Dm(x− a)λ, α > 0.

Then,

Dα
∗a(x−a)λ =


0, if λ ∈ {0, 1, · · · ,m− 1} ,

Γ(λ+1)
Γ(λ+1−α)

(x− a)λ−α, if λ ∈ N and λ ≥ m or λ /∈ N and λ > m− 1.

We notice that the Caputo derivative is also a left inverse of the Riemann-

Liouville integral operator, considering the interaction of Riemann-Liouville integral

and Caputo differential operators.
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Theorem 1.2.6. [14] Let α ≥ 0 and f be a continuous function, then

Dα
∗aI

α
a f = f.

Moreover, the Caputo derivative is not the right inverse of the Riemann-Liouville

integral.

Theorem 1.2.7. [14] Let α ≥ 0, such that m− 1 < α ≤ m, and f ∈ Am[a, b], then

I α
a Dα

∗af(x) = f(x)−
m−1∑
k=0

Dkf(a)

k!
(x− a)k.
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Chapter 2

Reproducing Kernel Hilbert

Spaces

A reproducing kernel Hilbert space, which is constructed from a Hilbert space

H , mandates that all Dirac evaluation functionals in H are both continuous and

bounded.

A Dirac functional at an element x ∈ X is a functional δx ∈ H such that δx(f) =

f(x). Note that δx is bounded if ∃M > 0 such that ‖δxf‖R ≤M‖f‖H , ∀f ∈H .

The significance of this is due to Riesz’s Theorem (1.1.1). When we convert this

theorem into Dirac evaluation functionals, we obtain that for every δx, there is a

unique vector kx in H such that δx(f) = f(x) = 〈f, kx〉H .

2.1 Reproducing Kernel Hilbert Space

Definition 2.1.1. [3] Consider H to be a Hilbert space of functions f : X −→ K

on a set X. A function k : X × X −→ C is a reproducting kernel of H if the

following properties are satisfied

1. k(., x) ∈H , For every x ∈ X,

2. 〈f, k(., x)〉H = f(x), For every f ∈H and x ∈ X, (Reproducing Property).
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The second condition implies that the function f evaluated at x is reproduced by the

inner product of f with k. Additionally, the first condition can be rewritten as: for

all x ∈ X, kx(y) = k(x, y) ∈ H , ∀y ∈ X. Thus, utilizing the reproducing property

to the function kx at y, we get:

kx(y) = 〈kx, ky〉 , ∀x, y ∈ X.

therefore, ∀x ∈ X, we obtain ‖kx‖2 = 〈kx, kx〉 = k(x, x).

If there is a reproducing kernel k of a Hilbert functions space H , then H is

called a reproducing kernel Hilbert space (RKHS). We denote the RKHS by Hk, and

〈., .〉Hk
, ‖.‖Hk

represent the inner product and the norm respectively.

Theorem 2.1.1. [3] If a Hilbert space H of functions defined on a set X has a

reproducing kernel, then the reproducing kernel k(x, y) is uniquely determined by the

Hilbert space H .

Theorem 2.1.2. [3] Let H be a Hilbert functions space on X, then there is a

reproducing kernel k of H if and only if for every x ∈ X, the Dirac functional

δx : f −→ f(x) is a bounded linear functional on H .

Definition 2.1.2. [3] Let k : X ×X −→ C be a complex-valued fucntion on a set

X, then

1. k is Hermitian if for every finite set of points y1, ...., yn ⊆ X, and any complex

numbers c1, ....., c2, we have

∞∑
i,j=1

cicj k(yi, yj) ∈ R
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2. k is positive definite if
∞∑

i,j=1

cicj k(yi, yj) ≥ 0

Theorem 2.1.3. [3] The reproducing kernel k(x, y) of a reproducing kernel Hilbert

space H is a positive definite kernel.

Proof : We have

0 ≤ ‖
∑n

i=1 cikxi‖
2

= 〈
∑n

i=1 cikxi ,
∑n

i=1 cikxi〉 ,

=
∑n

i=1

∑n
j=1 cicj

〈
kxi , kxj

〉
,

=
∑n

i=1

∑n
j=1 cicjk(xi, xj).

Hence,
∑n

i=1

∑n
j=1 cicjk(xi, xj) ≥ 0.

Remark 2.1.1. Let H be a RKHS, and k(x, y) its kernel on X. Then for every

x, y ∈ X, we have the following

1. |k(x, y)|2 ≤ k(x, x)k(y, y),

2. for x∗ ∈ X, then the following are equivalent

• k(x∗, x∗) = 0,

• k(x∗, y) = 0, ∀y ∈ X,

• f(x∗) = 0, ∀f ∈H .

We can demonstrate (1) by applying the Schwarz inequality in H , so we obtain

|k(x, y)|2 = |〈kx, ky〉|2 ≤ ‖kx‖2‖ky‖2 = 〈kx, kx〉〈kyky〉 = k(x, x)k(y, y).

For (2) it follows by (1) that

|k(x∗, y)|2 ≤ k(x∗, x∗)k(y, y) = 0.
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Hence, k(x∗, x∗) = 0 is equivalent with k(x∗, y) = 0,∀y ∈ X. Moreover, by the

reproducing property k(x∗, y) = 0, ∀y ∈ X if and only if f(x∗) = 0 for every

f ∈H .

Theorem 2.1.4. [3] Every sequence of functions (gn)n≥1 that strongly converge

to a function g in Hk(x), it also converges in the pointwise sense, which means

limn→∞ gn(x) = g(x), ∀x ∈ X. Furthermore, this convergence is uniform on every

subset of X on which x −→ k(x, x) is bounded.

Proof : For x ∈ X, using the Schwwarz inequality and the reproducing property,

we get:

|g(x)− gn(x)| = |〈g , kx〉 − 〈gn , kx〉| ,

= |〈g − gn , kx〉| ,

≤ ‖g − gn‖ ‖kx‖ ,

= ‖g − gn‖ k(x, x)
1
2 .

Hence, limn→∞ gn(x) = g(x), ∀x ∈ X. Moreover, from the above inequality it

is clear that this converge is uniform on every subset of X on x −→ k(x, x) is

bounded.

Definition 2.1.3. Consider the non-negative integer m, and let u ∈ L2[a, b], then

the function space W m
2 [a, b] is defined as follows

W m
2 [a, b] = {u|u(i) is Abs.C, i = 1, .....,m− 1, and u(m) ∈ L2[a, b]}.

The inner product and the norm are defined respectively in the function space W m
2 [a, b]
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as follows:

〈u, v〉W m
2 [a,b] :=

m−1∑
i=0

u(i)(a)v(i)(a) +

∫ b

a

u(m)(x)v(m)(x)dx, (2.1)

and

‖u‖W m
2 [a,b] = (〈u, u〉W m

2 [a,b])
1
2 , (2.2)

for all functions u(x), v(x) in W m
2 [a, b].

Theorem 2.1.5. [7] The function space W m
2 [a, b] is a Hilbert space.

Theorem 2.1.6. [3] The function space W 2
m[a, b] is a reproducing kernel space.

That is, ∀x ∈ [a, b], ∀u(y) ∈ W m
2 [a, b], ∃ kx(y) ∈ W m

2 [a, b], y ∈ [a, b] such that

〈u(y), kx(y)〉 = u(x), and kx(y) is called the reproducing kernel function of the space

W m
2 [a, b].

2.2 Reproducing Kernel Function

This section provides the various representations of the reproducing kernel func-

tions in the space W m
2 [a, b]. These representations are presented as piecewise poly-

nomials with a degree of 2m − 1. additionally, we will present some remarks and

corollaries related to these kernel functions. Several examples of such kernel func-

tions are given in space W 1
2 [a, b] at the end of this section.

Let’s now determine the expression form of the reproduction kernel function

kx(y) in the space W m
2 [a, b]. Suppose that kx(y) is the reproducing kernel function
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of the space W m
2 [a, b], so for all fixed x ∈ [a, b] and every u(y) ∈ W m

2 [a, b], y ∈ [a, b]

we have 〈u(y), kx(y)〉 = u(x), through the equations (2.1) and (2.2) we get

〈u(y), kx(y)〉W m
2 [a,b] =

m−1∑
i=0

u(i)(a)k(i)
x (a) +

∫ b

a

u(m)(y)k(m)
x (y)dy, (2.3)

using the integration by part for the right-hand of equation (2.3) we obtain

∫ b

a

u(m)(y)k(m)
x (y)dy =

m−1∑
i=0

(−1)iu(m−i−1)(y)k(m+i)
x (y)|by=a +

∫ b

a

(−1)mu(y)k(2m)
x (y)dy.

Assume that j = m − i − 1, then the first term from the right side of the above

formula can be rewritten as follows

m−1∑
i=0

(−1)iu(m−i−1)(y)k(m+i)
x (y)|by=a =

m−1∑
j=0

(−1)m−j−1u(j)(y)k(2m−j−1)
x (y)|by=a.

After a certain simplification, equation (2.3) becomes

〈u(y), kx(y)〉W m
2 [a,b] =

m−1∑
i=0

u(i)(a)(k(i)
x (a)− (−1)m−i−1k(2m−i−1)

x (a))

+
m−1∑
i=0

(−1)m−i−1u(i)(b)k(2m−i−1)
x (b) +

∫ b

a

(−1)mu(y)k(2m)
x (y)dy.

Since kx(y), u(y) ∈ W m
2 [a, b], it implies that

k(i)
x (a)− (−1)m−i−1k(2m−i−1)

x (a) = 0, k(2m−i−1)
x (b) = 0, i = 0, · · · ,m− 1.

Then 〈u(y), kx(y)〉W m
2 [a,b] =

∫ b
a
u(y)((−1)mk

(2m)
x (y))dy.

Now, let δ the dirac-delta function, for all x ∈ [a, b], if (−1)(m)k
(2m)
x (y) = δ(x − y),
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then

〈u(y), kx(y)〉W m
2 [a,b] =

∫ b

a

u(y)δ(x− y)dy = u(x),

clearly, kx(y) is the reproducing kernel of the space W m
2 [a, b], Hence kx(y) is

solution of the following generalized differential equations


(−1)mk

(2m)
x (y) = δ(x− y),

k
(i)
x (a)− (−1)m−i−1k

(2m−i−1)
x (a) = 0, i = 0, · · · ,m− 1 ,

k
(2m−i−1)
x (b) = 0, i = 0, · · · ,m− 1.

(2.4)

When x 6= y

(−1)mk(2m)
x (y) = 0, (2.5)

with the boundary conditions

k(i)
x (a)− (−1)m−i−1k(2m−i−1)

x (a) = 0, k(2m−i−1)
x (b) = 0, i = 1, · · · ,m− 1. (2.6)

For the equations (2.5), λ2m = 0 is the characteristic equation, and λ = 0 is their

characteristic values with 2m multiple roots, so the general solution of equation (2.5)

is as follows

kx(y) =


∑2m−1

i=0 Pi(x)yi, y ≤ x,∑2m−1
i=0 Qiyi, y > x.

(2.7)

Moreover, since (−1)mk2m
x (y) = δ(x− y), we have

k(i)
x (x+ 0) = k(i)

x (x− 0), i = 0, · · · , 2m− 2, (2.8)

by the integration of (−1)mk
(2m)
x (y) = δ(x− y) from x− ξ to x+ ξ with respect to
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y and let ξ −→ 0, we have the jump degree of k
(2m−1)
x (y) at y = x given by

(−1)m(k(2m−1)
x (x+ 0)− k(2m−1)

x (x− 0)) = 1. (2.9)

We have 2m equations: equation (2.8) and (2.9) provided 2m conditions for deter-

mining the coefficients Pi(x) and Qi(x) in (2.8), for i = 0, 1, · · · , 2m − 1. Further,

equation (2.6) provided 2m boundary conditions. Thus, we obtain a total of 2m

equations. It is evident that these 4m equations are linear equations with the vari-

ables Pi(x) and Qi(x), and the unknown coefficients Pi(x) and Qi(x) of equation

(2.7) can be computed by using Mathematica 11.0 software package.

Some important properties of the reproducing kernel kx(y) are provided by the fol-

lowing corollary.

Corollary 2.2.1. Let kx(y) be the reproducing kernel of the space W m
2 [a, b], then

kx(y) is symmetric, unique and kx(y) ≥ 0 , for all fixed x ∈ [a, b].

Proof : By the reproducing property, we have

kx(y) = 〈kx(.), ky(.)〉 = 〈ky(.), kx(.)〉 = ky(x).

Now, assume that kx(y) and k̃x(y) be all the reproducing kernel of the space W m
2 [a, b],

then

kx(y) = 〈kx(.), k̃y(.)〉 = 〈k̃y(.), kx(.)〉 = k̃y(x).

since k̃x(y) is symmetric, we get the unique representation of kx(y). For the last
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property, we note that

kx(x) = 〈kx(.), kx(.)〉 = ‖kx(.)‖2 ≥ 0.

Now we provide some expressions of reproducing kernel function in the space

W 1
2 [a, b] with respect to various norms by using the the method suggested in this

section.

Example 2.2.1. Let the space W 1
2 [a, b] = {u : [a, b] −→ R : u(x) is Abc.C and u′(x) ∈

L2[a, b]}, the inner product and the norm in this space are given by

〈u, v〉W 1
2

= u(a)v(a)+

∫ b

a

u′(y)v′(y)dy, and ‖u‖W 1
2

= 〈u, u〉
1
2 , ∀u(x), v(x) ∈ W 1

2 [a, b].

We apply the integration by parts to find the reproducing kernel function kx(y)

〈u, kx〉W 1
2

= u(a)kx(a) + u(y)k′x(y)|by=a −
∫ b

a

u(y)k′′x(y)dy.

Since u(y), kx(y) ∈ W 1
2 [a, b], we get kx(a) − k′x(a) = 0 and k′x(b) = 0. So, we must

solve the BVP. 
−k′′x(y) = δ(x− y),

kx(a)− k′x(a) = 0,

k′x(b) = 0.

λ2 = 0 is the characteristic equation of the differential equation −k′′x(y) = 0, and the
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characteristic value is λ = 0 with 2 multiple roots. Then

kx(y) =


P1(x) + P2(x)y, y ≤ x,

Q1(x) +Q2(x)y, y > x.

Moreover, by using the equations (2.8) and (2.9) we get kx(x+0) = kx(x−0) and k′x(x+

0)−k′x(x− 0) = 1, Accordingly, the unknown coefficients Pi(x), and Qi(x), i = 1, 2

can be found by resolving the following equations

1) kx(a)− k′x(a) = 0,

2) k′x(b) = 0,

3) kx(x+ 0) = kx(x− 0),

4) k′x(x+ 0)− k′x(x− 0) = −1.

Thus, the reproducing kernel function is given by

kx(y) =


y − a+ 1, y ≤ x,

x− a+ 1, y > x.

Figure 2.1: Image of the reproducing kernel function kx(y) of the space W 1
2 [0, 1]

Example 2.2.2. Consider the space W 1
2 [a, b] = {u : u(x) is Abs.C, u′(x) ∈
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L2[a, b] and u(a) = u(b) = 0}. The inner product and the norm in this space

are given respectively by


〈u, v〉W 1

2
=
∫ b
a
u′(y)v′(y)dy,

‖u‖ = (〈u, u〉) 1
2 ,

where u(x), v(x) ∈ W 1
2 . (2.10)

Similarly, as in Example (2.2.1) we have

Rx(y) =


c1(x) + c2(x)y, y ≤ x ,

d1(x) + d2(x)y, y > x .

The unknown coefficients ci(x), and di(x), i = 1, 2 can be found by resolving the

following equations

1) Rx(a) = 0,

2) Rx(b) = 0,

3) Rx(x+ 0) = Rx(x− 0),

4) R′x(x+ 0)− R′x(x− 0) = −1.

Then, the reproducing kernel Rx(y) is given by

Rx(y) =


(b− x)(a− y)

a− b
, y ≤ x,

(a− x)(b− y)

a− b
, y > x.
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Figure 2.2: Image of the reproducing kernel function Rx(y) of the space W 1
2 [0, 1]

Example 2.2.3. Consider the space W 1
2 [a, b] defined as the same set of functions in

Example(2.2.1), and specify a new inner product in the space W 1
2 [a, b] by 〈u, v〉W 1

2
=∫ b

a
(u(y)v(y)+u′(y)v′(y))dy, such that u(x), v(x) ∈ W 1

2 [a, b], and with the same norm.

Via integration by parts of 〈u,Px〉W 1
2

=
∫ b
a
(u(y)Px(y) + u′(y)P′x(y))dy, we get

〈u,Px〉W 1
2

= u(y)P′x(y)|by=a +

∫ b

a

u(y)(Px(y)− P′′x(y))dy.

Since u(y),Px(y) ∈ W 1
2 [a, b], we get P′x(a) = P′x(b) = 0. Then Px(y) − P′′x(y) =

δ(x − y). The characteristic equation is 1 − λ2 = 0, and the characteristic values

are λ = −1, 1. So

Px(y) =


a1(x)e−y + a2(x)ey, y ≤ x,

b1(x)e−y + b2(x)ey, y > x.
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By solving the following equations

1) P′x(a) = 0,

2) P′x(b) = 0,

3) Px(x+ 0) = Px(x− 0),

4) P′x(x+ 0)− P′x(x− 0) = −1,

we get the unknown coefficients ai(x), bi(x), i = 1, 2, and so the reproducing kernel

function is given by

Px(y) =


− e−(x+y)(e2b + e2x)(e2a + e2y)

2(e2a − e2b)
, y ≤ x,

− e−(x+y)(e2a + e2x)(e2b + e2y)

2(e2a − e2b)
, y > x .

Figure 2.3: Image of the reproducing kernel function Px(y) of the space W 1
2 [0, 1]

2.3 The Reproducing Kernel Method

In this section, we will describe an iterative approach for constructing and deter-

mining the solution of the general mth order BVP. We considering the general form
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of the BVP as follows

u(m)(x) + a1(x)u(m−1)(x) + · · ·+ am−1(x)u′(x) = F(x, u(x)), a ≤ x ≤ b, (2.11)

subject to the BCs


u(i)(a) = ei, i = 0, 1, · · · , r − 1,

u(i)(b) = di, i = r, · · · ,m− 1.

(2.12)

Where ai(x), i = 1, · · · ,m − 1, are continuous real-valued functions, ei, 0 ≤ i ≤

r−1, and di, r ≤ i ≤ m−1 are real constants, and u(x) denote the unknown function

to be determined, and F is a linear or nonlinear continuous function depending on

the problem discussed.

For solving of BVP (2.11) and (2.12), we use the RKHS method. First, we create a

reproducing kernel space W m
2 [a, b] such that every function satisfies the homogeneous

BCs (2.12), and then we use the space W 1
2 [a, b]. The inner product and the norm

in the space W m
2 [a, b] are obtained as in equations (2.1), and (2.2) respectively.

Let Rx(y)[a, b], kx(y)[a, b] be the reproducing kernel functions of the spaces W 1
2 [a, b]

and W m+1
2 [a, b] respectively. We define a differential operator L : W m+1

2 [a, b] →

W 1
2 [a, b], such that

Lu(x) = u(m)(x) + a1(x)u(m−1)(x) + · · ·+ am−1(x)u′(x),

Through the following lemma, we can demonstrate that L is a bounded operator.
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Lemma 2.3.1. If u(x) ∈ W m+1
2 [a, b], then

|u(i)(x)| ≤ Mi‖u(x)‖W m+1
2

,

such that Mi are constants for i = 0, 1, · · · ,m.

Proof : By the reproducing property of kx(y) and Schwarz inequality, and since

k
(i)
x (y) are uniformly bounded about x and y for i = 0, 1, · · · ,m, then

|u(x)| = |〈u(y), kx(y)〉W m+1
2
| ≤ ‖kx(y)‖W m+1

2
‖u(y)‖W m+1

2
,

≤ M0‖u(x)‖W m+1
2

.

Moreover, from the representation of kx(y), we can obtain,

|u(i)(x)| = |〈u(y), k(i)
x (y)〉W m+1

2
| ≤ ‖k(i)

x (y)‖W m+1
2
‖u(y)‖W m+1

2

≤ Mi‖u(x)‖W m+1
2

.

Thus, after homogenizing the BC’s (2.12), the BVPs (2.11), (2.12) can be trans-

formed to the equivalent form as follows

Lu(x) = F(x, u(x)), a ≤ x ≤ b, (2.13)

u(i)(a) = 0, i = 0, 1, · · · , r − 1, u(i)(b) = 0, i = r, r + 1 · · · ,m− 1, (2.14)

such that u(x) ∈ W m+1
2 [a, b] and F(x, u(x)) ∈ W 1

2 [a, b].

Now, we create an orthogonal function system for the space W m+1
2 [a, b], we choose a
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countable dense set {xi}∞i=1 of [a, b], and let Φi(x) = Rxi(y). Thus by the properties

of Rxi(y), for all u(x) ∈ W 1
2 [a, b], it implies that

〈u(x),Φi(x)〉W 1
2

= 〈u(x), Rxi(y)〉W 1
2

= u(xi).

In addition, let L∗ be the adjoint operator of L such that Ψi(x) = L∗Φi(x). Clearly,

Ψi(x) ∈ W m+1
2 [a, b]. With respect to the properties of kx(y), ∀ i = 1, 2, ...., we have

〈u(x),Ψi(x)〉W m+1
2

= 〈u(x),L∗Φi(x)〉W m+1
2

,

= 〈Lu(x),Φi(x)〉W 1
2
,

= Lu(xi).

Lemma 2.3.2. Ψi(x) can be written on the following form

Ψi(x) = Ly kx(y)|y=xi .

Proof : It is clear that

Ψi(x) = L∗Φi(x) = 〈L∗Φi(y), kx(y)〉W m+1
2

,

= 〈Φi(y), L kx(y)〉W 1
2
,

= Ly kx(y)|y=xi .

Theorem 2.3.1. Assume that the operator L is invertible, and if {xi}∞i=1 is dense

on [a, b], then {Ψi}∞i=1, is the complete function system of the space W m+1
2 [a, b].

Proof : For every fixed u(x) ∈ W ,m+1
2 [a, b], let 〈u(x),Ψ1

i (x)〉 = 0, ∀i = 1, 2, · · · ,
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that is

〈u(x),Ψi(x)〉W m+1
2

= 〈u(x),L∗Φi(x)〉W m+1
2

,

= 〈Lu(x),Φi(x)〉W 1
2
,

= Lu(xi) = 0.

Since {xi}∞i=1 is dense on [a, b], then Lu(x) = 0, it follows that u(x) = 0 because

L−1 exist and u(x) is continuous.

Now, the orthonormal function system {Ψi(x)}∞i=1 of the space W m+1
2 [a, b], it can

be derived from Gram-Schmidt orthogonalization process of {Ψi(x)}∞i=1 as follows

Ψi(x) =
i∑

k=1

BikΨk(x), i = 1, 2... (2.15)

where Bik are positive orthogonalization coefficients and are given by

B11 =
1

‖Ψ1‖
, Bii =

1√
‖Ψi‖2 −

∑i−1
k=1 C

2
ik

, Bij =
−
∑i−1

k=1 CikBkj√
‖Ψi‖2 −

∑i−1
k=1 C

2
ik

j < i, (2.16)

such that Cik = 〈Ψi,Ψk〉W m+1
2

.

Theorem 2.3.2. For all u(x) ∈ W m+1
2 [a, b], the series

∑∞
i=1〈u(x),Ψi〉Ψi(x) are

convergent in the sense of the norm of W m+1
2 [a, b]. In contrast if {xi}∞i=1 is dense in

[a, b], then the unique solution of the BVP (2.11) and (2.12) is given by

u(x) =
∞∑
i=1

i∑
k=1

BikF(xk, u(xk),Ψi(x)). (2.17)

Proof : By applying the Theorem (2.3.1), it is easy to see that {Ψi(x)}∞i=1 is
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the complete orthonormal basis of the space W m+1
2 [a, b]. Thus, u(x) can be ex-

panded in the Fourier series about the orthonormal system {Ψi(x)}∞i=1 as u(x) =∑∞
i=1

〈
u(x),Ψi(x)

〉
Ψi(x). Moreover, the space W m+1

2 [a, b] is Hilbert space, then the

series
∑∞

i=1

〈
u(x),Ψi(x)

〉
Ψi(x) is convergent in the sense of the norm of W m+1

2 [a, b].

Since 〈v(x),Φi(x)〉 = v(xi), ∀ v(x) ∈ W 1
2 [a, b], we have

u(x) =
∑∞

i=1〈u(x),Ψi(x)〉W m+1
2

Ψi(x),

=
∑∞

i=1〈u(x),
∑i

k=1BikΨk(x)〉W m+1
2

Ψi(x),

=
∑∞

i=1

∑i
k=1Bik〈u(x),Ψk(x)〉W m+1

2
Ψi(x),

=
∑∞

i=1

∑i
k=1Bik〈u(x),L∗Φk(x)〉W m+1

2
Ψi(x),

=
∑∞

i=1

∑i
k=1Bik〈Lu(x),Φk(x)〉W 1

2
Ψi(x),

=
∑∞

i=1

∑i
k=1Bik〈F(x, u(x)),Φk(x)〉W 1

2
Ψi(x),

=
∑∞

i=0

∑i
k=1BikF(xk, u(xk))Ψi(x).

The n−term approximate solution of u(x) denoted by

un(x) =
n∑
i=1

i∑
k=1

BikF(xk, u(xk))Ψi(x) (2.18)

Theorem 2.3.3. For all u(x) ∈ W m+1
2 [a, b], u

(i)
n (x), are uniformly convergent to

u(i)(x), i = 1, · · · ,m.

Proof : By using lemma (2.3.1), for every x ∈ [a, b], we obtain∣∣∣u(i)
n (x)− u(i)(x)

∣∣∣ =

∣∣∣∣〈u(i)
n (x)− u(i)(x), kx(x)

〉
W m+1

2

∣∣∣∣ ,
=

∣∣∣∣〈un(x)− u(x), k
(i)
x (x)

〉
W m+1

2

∣∣∣∣ ,
≤

∥∥∥k
(i)
x (x)

∥∥∥
W m+1

2

‖un(x)− u(x)‖W m+1
2

,

≤ Mi ‖un(x)− u(x)‖W m+1
2

−→ 0, as n −→∞.
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So, the approximate solution un(x), and u
(i)
n (x) converge uniformly to u(x) and its

derivative u(i)(x), respectively.

We will now introduce an effective algorithm to solve BVP (2.13) and (2.14)

based on RKHS method, let k(x, y) be the reproducing kernel function of the space

W m+1
2 [a, b].

Algorithm: Use the following steps to approximate the solutions of BVPs (2.13)

and (2.14) based on RKHS method.

Input: integer n, real numbers a, b, the functions k1(x, y), k2(x, y), the differential

operator L, the inner product 〈u(x), v(x)〉W m+1
2

.

Output: Approximate solutions un(x) of the BVP (2.13) and (2.14).

• Stepe A: Fixed x ∈ [a, b] and set y ∈ [a, b];

For i = 1, ..., n do the following stepes;

– stepe 1: set xi = a+ (b−a)i
n

;

– stepe 2: if y ≤ x then set kx(y) = k1(x, y) else set kx(y) = k2(x, y);

– stepe 3: Ψη
i (x) = Ly[K(x, y)]|y=xi ;

Output the orthogonal functions system Ψi(x).

• Stepe B: For i = 1, ..., n;

For j = 1, ..., i set Cij = 〈Ψi,Ψj〉W m+1
2

, set B11 = 1
Sqrt(C11)

;

Output Cij and B11.

• Stepe C: For i = 2, 3, ..., n, do stepes;

– stepe 1: For k = 1, 2, ..., i− 1 set CCik =
∑k

m=1BkmCim;



35

– stepe 2: For j = 1, 2, ..., i, if j 6= i;

then set Bij = −(
∑i−1

k=j CCikBkj).(Cii−
∑i−1

k=1(Cik)
2)
−1
2 ;

else set Bii = (Cii −
∑i−1

k=1(Cik)
2)−

1
2 ;

Output the orthogonalization coefficients Bij.

• Stepe D: For i = 1, ..., n set Ψi(x) =
∑i

k=1BikΨi(x);

Output the orthonormal functions system Ψi(x);

• Stepe E: Set u0(x1) = 0;

For i = 1, ..., n do stepes;

– stepe 1: Set u(xi) = ui−1(xi);

– stepe 2: Set Bi =
∑i

k=1BikF(xk, uk−1(xk));

– stepe 3: Set ui(x) =
∑i

k=1 BkΨk(x).

The n-term approximate solution un(x) of BVP (2.13) and (2.14) is obtained.
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Chapter 3

First and Second Order

Fractional Differential

Equations

In this chapter, the RKHS method is applied to approximate the solution of

a general form of first and second order FDEs. The analytical and approximate

solutions are represented in term of series in the RKHS, the n−term approximation

is obtained and is proved to converge to the analytical solution.

3.1 First Order Fractional Differential Equations

Consider the following first order FDE:

Dα
∗au(x) = f(x, u(x)), a ≤ x ≤ b, 0 < α ≤ 1

u(a) = u0,

(3.1)

such that a, b, and u0 are real constants, Dα
∗a denotes the Caputo fractional

derivative of order α, u(x) is unknown function to be determined and f(x, u(x)) is a

linear or nonlinear function depending on the problem discussed. Assume that FDE
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(3.1) has a unique solution.

Now, in order to resolve FDE (3.1), we build a several reproducing kernels. The space

W 2
2 [a, b] is defined as W 2

2 [a, b] = {u : u, u′ is Abs. C, u, u′, u′′ ∈ L2[a, b], u(a) = 0}.

The inner product and the norm in W 2
2 [a, b] are given by

〈u, v〉W 2
2

= u(a)v(a) + u′(a)v′(a) +
∫ b
a
u′′(t)v′′(t)dt.

‖u‖W 2
2

=
√
〈u, u〉,

(3.2)

for all u, v ∈ W 2
2 [a, b].

Theorem 3.1.1. The space W 2
2 [a, b] is a reproducing kernel Hilbert space. That is,

for every fixed x ∈ [a, b], there exist Kx(y) ∈ W 2
2 [a, b] such that 〈u(y), kx(y)〉W 2

2
=

u(x) for all u(y) ∈ W 2
2 [a, b] and y ∈ [a, b]. The reproducing kernel kx(y) can be

written as

Kx(y) =
1

6


(y − a)(2a2 − y2 + 3x(2 + y)− a(6 + 3x+ y)), y ≤ x,

(x− a)(2a2 − x2 + 3y(2 + x)− a(6 + 3y + x)), y < x.

(3.3)

Proof : As the same procedure of Example(2.2.1) we have

Kx(y) =


∑3

i=0Pi(x)yi, y ≤ x,∑3
i=0Qi(x)yi, y > x.

(3.4)

So we will solve the following equations to obtain the unknown coefficients Pi(x),Qi(x), i =

0, 1, 2, 3,



38

1) kx(a) = 0 5) kx(x+ 0) = kx(x− 0)

2) k′x(a)− k′′x(a) = 0 6) k′x(x+ 0) = k′x(x− 0)

3) k′′x(b) = 0 7) k′′x(x+ 0) = k′′x(x− 0)

4) k′′′x (b) = 0 8) k′′′x (x+ 0)− k′′′x (x− 0) = 1

then substituting Pi(x),Qi(x) in equation (3.4) we have the reproducing kernel

function (3.3).

Let W 2
2 [a, b] = {u : u, u′ is Abs.C, u, u′, u′′ ∈ L2[a, b], u(a) = 0}, if we are

re-defining the inner product (3.3)by

〈u, v〉W 2
2

= u(a)v(a) + u(b)v(b) +

∫ b

a

u′′(t)v′′(t)dt, u, v ∈ W 2
2 [a, b], (3.5)

and the norm ‖u‖W 2
2

=
√
〈u, u〉, u ∈ W 2

2 [a, b], we have the following theorem.

Theorem 3.1.2. The space W 2
2 [a, b] is a reproducing kernel Hilbert space, That is,

for any fixed x ∈ [a, b], there exists Rx(y) ∈ W 2
2 [a, b] such that 〈u(y),Rx(y)〉W 2

2
=

u(x) for any u(y) ∈ W 2
2 [a, b] and y ∈ [a, b]. The reproducing kernel function Rx(y)
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can be written as

Rx(y) =
1

6(a− b)2




−2a3(b− x)(b− y) + a2(6 + 2b3 + x3 + 3xy2 − 3b(x2 + y2)) + y

(−3b2x2 + bx3 − b2y2 + x(6 + 2b3 + by2))− a((−3bx2 + x3)

(b+ y) + y(6 + 2b3 − 3b2y − by2) + x(6 + 2b3 + 3by2 + y3))

 ,

y ≤ x,
−2a3(b− y)(b− x) + a2(6 + 2b3 + y3 + 3yx2 − 3b(y2 + x2)) + x

(−3b2y2 + by3 − b2x2 + y(6 + 2b3 + bx2))− a((−3by2 + y3)

(b+ x) + x(6 + 2b3 − 3b2x− bx2) + y(6 + 2b3 + 3bx2 + x3))

 ,

y > x.

(3.6)

Proof : As the same procedure of Example (2.2.1) we get

Rx(y) =


∑3

i=0Pi(x)yi, y ≤ x,∑3
i=0Qi(x)yi, y > x.

(3.7)

So we will solve the following equations to obtain the unknown cofficients Pi(x),Qi(x), i =

0, 1, 2, 3

1) Rx(a) = 0 5) Rx(x+ 0) = Rx(x− 0)

2) R′′x(a) = 0 6) R′x(x+ 0) = R′x(x− 0)

3) Rx(b)−R′′′x (b) = 0 7) R′′x(x+ 0) = R′′x(x− 0)

4) R′′x(b) = 0 8) R′′′x (x+ 0)−R′′′x (x− 0) = 1

then Substituting Pi(x),Qi(x) in equation(3.7) we have the reproducing kernel func-

tion (3.6).

The space W 1
2 [a, b] is a complete reproducing kernel space, and we use the re-
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producing kernel in Exempel(2.2.3)

Tx(y) =
1

2 sinh(b− a)
[cosh(x+ y − b− a) + cosh(|x− y| − b+ a)].

From the definition of the reproducing kernel space W 2
2 [a, b], we get W 1

2 [a, b] ⊃

W 2
2 [a, b], for all u ∈ W 2

2 [a, b] and ‖u‖W 1
2
≤ ‖u‖W 2

2
.

To solve equation (3.1), we define a differentian operator L : W 2
2 [a, b] → W 1

2 [a, b],

such that Lu(x) = Dα
∗a. After homogenization of the initial condition of Equa-

tion(3.1), the FDE can be transformed into the corresponding format as follows


Lu(x) = f(x, u(x)),

u(a) = 0,

(3.8)

such that x ∈ [a, b], u(x) ∈ W 2
2 [a, b] and f(x, u(x)) ∈ W 1

2 [a, b].

Now, applying the operator I α
a to both sides we have u(x) − u(a) = 1

Γ(a)

∫ x
a

(x −

t)α−1f(x, u(t))dt, since u(a) = 0, then we have

u(x) = F(x, u(x)), (3.9)

where F(x, u(x)) = 1
Γ(α)

∫ x
a

(x− t)α−1f(x, u(t))dt.

So define a differential operator L : W 1
2 [a, b] → W 2

2 [a, b] such that Lu(x) = u(x),

then it can be converted into the equvalent form as follow


Lu(x) = F(x, u(x)),

u(a) = 0.

(3.10)

where, x ∈ [a, b], u(x) ∈ W 2
2 [a, b] and F ∈ W 1

2 [a, b].



41

It’s clear that Lu(x) = u(x) is bounded operator, now to show that Lu(x) = Dα∗au(x)

is bounded operator.

Lemma 3.1.1. L is bounded operator from W 2
2 [a, b] to W 1

2 [a, b], where Lu(x) =

Dα∗au(x).

Proof : By reproducing property of kx(y) and Schwarz inequality, also since Dα
∗akx(y)

is uniformly bounded about x and y, we can get |Dα
∗au(x)| = |〈u(y),Dα

∗akx(y)〉W 2
2
| ≤

‖Dα
∗akx(y)‖W 2

2
‖u(y)‖W 2

2
≤M1‖u(y)‖W 2

2
.

Similarly, we can show that | d
dx

(Dα
∗au(x))| ≤ M2‖u(y)‖W 2

2
. Hence, ‖Lu(x)‖2

W 1
2

=

‖Dα
∗au(x)‖2

W 1
2

=
∫ b
a
(Dα
∗au(x))2 + ( d

dt
(Dα
∗au(t)))2dt ≤M‖u(x)‖2

W 2
2

.

Where M = (b− a)(M2
1) + (M2

2).

Now, we construct an ortogonal function system of W 2
2 [a, b], let Φi(x) = Txi(x)

and Ψi(x) = L∗Φi(x), where {xi}∞i=1 is dense in the interval [a, b], L∗ is the adjoint

operator of L and Tx(y) is the reproducing kernel of W 1
2 [a, b], by the properties

of the reproducing kernel Tx(y), we have 〈u(x),Φi(x)〉W 1
2

= u(xi). In term of the

properties of kx(y), we obtains

〈u(x),Ψi(x)〉W2
2

= 〈u(x),L∗Φi(x)〉W2
2

= 〈Lu(x),Φi(x)〉W1
2

= Lu(xi). (3.11)

Furthemore, Ψi(x) can be expressed in the form Ψi(x) = Lykx(y)|y=xi . That is

Ψi(x) = L∗Φi(x) = 〈L∗Φi(x), kx(y)〉W2
2

= 〈Φi(x),Lkx(y)〉W2
2

= Lykx(y)|y=xi = F(xi, k(xi)),

(3.12)

For equations (3.8) and (3.10), assume that the inverse operator L−1 exist, therefore,

if {xi}∞i=1 is dense in [a, b], then {Ψi(x)}∞i=1 is the complete function system of the
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space W2
2 [a, b]. Practice Gram-Schmidt orthonormalization for {Ψi(x)}∞i=1 , we get

Ψi(x) =
∑i

k=1 BikΨk(x), where Bik are coefficients of Gram-Schmidt orthonormal-

ization and are given by equation (2.15), and {Ψi(x)}∞i=1 is the orthonormal system

in the space W2
2 [a, b].

Theorem 3.1.3. Let {xi}∞i=1 be a dense set in [a, b]. Then the unique solution of

(3.1) on W2
2 [a, b] is given by

u(x) =
∞∑
i=1

i∑
k=1

BikF(xk, u(xk))Ψi(x). (3.13)

Proof : According to the orthogonal basis {Ψi(x)}∞i=1 of W2
2 [a, b], we have

u(x) =
∑∞

i=1〈u(x),Ψi(x)〉W2
2
Ψi(x),

=
∑∞

i=1

∑i
k=1Bik〈u(x),Ψk(x)〉W2

2
Ψi(x),

=
∑∞

i=1

∑i
k=1Bik〈u(x),L∗Φk(x)〉W 2

2
Ψi(x),

=
∑∞

i=1

∑i
k=1Bik〈Lu(x),Φk(x)〉W1

2
Ψi(x),

=
∑∞

i=1

∑i
k=1Bik〈F(x, u(x)),Φk(x)〉W1

2
Ψi(x),

=
∑∞

i=1

∑i
k=1BikF(xk, u(xk))Ψi(x).

We denote the n−term approximate solution to u(x) by

u(x) =
n∑
i=1

i∑
k=1

BikF(xk, u(xk))Ψi(x). (3.14)

By using Theorem (2.1.3) we having the following lemma

Lemma 3.1.2. The approximate solution un(x) and its derivative u′n(x) are both

uniformly convergent.
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3.2 Second Order Fractional Differential Equations

The RKHS method is used in this section to get a numerical solution for initial

and boundary second-order FDEs. The analytical solution u(x) and approximate

solution un(x) are represented in terms of series in the space W3
2 [a, b].

3.2.1 IVP Second Order FDEs

Consider the IVP second order FDE of the following form:

Dα
∗au(x) = F(x, u(x), u′(x)), a ≤ x ≤ b, 1 < α ≤ 2, (3.15)

u(a) = u0, u
′(a) = u1.

where a, b, u0 and u1 are real constants, Dα
∗a denotes the Caputo fractional deriva-

tive of order α, f(x, u(x), u′(x)) is a linear or nonlinear function depending on the

problem discussed, and u(x) is unknown function to be determined.

We construct a reproducing kernel space W3
2 [a, b] in which every function satisfies

u(a) = 0, u′(a) = 0. The reproducing kernel Hilbert space W3
2 [a, b] is defined as

W 3
2 [a, b] = {u : u, u′, u′′ are Abs. C, u, u′, u′′, u′′′ ∈ L2[a, b], u(a) = u′(a) = 0}. The

inner product and the norm are given respectively by

〈u, v〉W 3
2

= u(a)v(a) + u′(a)v′(a) + u′′(a)v′′(a) +

∫ b

a

u′′′(t)v′′′(t)dt. (3.16)

and ‖u‖W 3
2

=
√
〈u, u〉W 3

2
, where u, v ∈ W 3

2 [a, b].

Theorem 3.2.1. The space W 3
2 [a, b] is a reproducing Kernel space. That is, for

every fixed x ∈ [a, b] and all u(x) ∈ W 3
2 [a, b], there exist kx(y) ∈ W 3

2 [a, b], y ∈ [a, b]
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such that 〈u(y), kx(y)〉W 3
2

= u(x), and the reproducing kernel kx(y) can be presented

by

kx(y) =
1

120



(a− y)2

 −6a3 − 5xy2 + y3 + 10x2(3 + y) + 3a2(10

+5x+ y)− 2a(5x2 − y2 + 5x(6 + y)

 , y ≤ x,

(a− x)2

 −6a3 − 5yx2 + x3 + 10y2(3 + x) + 3a2(10

+5y + x)− 2a(5y2 − x2 + 5y(6 + x)

 , y > x.

(3.17)

Proof : As the same procedure of Example (2.2.1) we have

kx(y) =


∑5

i=0Pi(x)yi, y ≤ x,∑5
i=0Qi(x)yi, y > x.

(3.18)

and we have the following equations

1) kx(a) = 0 7) kx(x+ 0) = kx(x− 0)

2) k′x(a) = 0 8) k′x(x+ 0) = k′x(x− 0)

3) k′′x(a)− k′′′x (a) = 0 9) k′′x(x+ 0) = k′′x(x− 0)

4) k′′′x (b) = 0 10) k′′′x (x+ 0) = k′′′x (x− 0)

5) k
(4)
x (b) = 0 11) k

(4)
x (x+ 0) = k

(4)
x (x− 0)

6) k
(5)
x (b) = 0 12) k

(5)
x (x+ 0)− k

(5)
x (x− 0) = 1

We find the unknown coefficients Pi, Qi, i = 0, 1, ...5 by using Mathematica 11.0,

then substituting these coefficients in (3.18), hence (3.17) is obtained.

Let W 3
2 [a, b] = {u : u, u′, u′′ are Abs. C, u, u′, u′′, u′′′ ∈ L2[a, b], u(a) = u′(a) =

0}, but if we are re-defining the inner product (3.16) by

〈u, v〉W 3
2

= u(a)v(a) + u′(a)v′(a) + u(b)v(b) +

∫ b

a

u′′′(t)v′′′(t)dt. (3.19)
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and the norm ‖u‖W 3
2

=
√
〈u, u〉W 3

2
, u, v ∈ W 3

2 [a, b], we get the following theorem.

Theorem 3.2.2. The space W 3
2 [a, b] is a reproducing kernel space. That is, for

every fixed x ∈ [a, b] and all u(x) ∈ W 3
2 [a, b], there exist Rx(y) ∈ W 3

2 [a, b], y ∈ [a, b]

such that 〈u(y),Rx(y)〉, and the reproducing kernel Rx(y) can be presented by

Rx(y) =


g(x, y), y ≤ x,

g(y, x), y > x.

(3.20)

where g(x, y) = − 1

120(a− b)4
(a− y)2(10b4x3 − 5b3x4 + b2x5 + 4a5

(b−x)(b−y)−a4(b−x)(b−y)(14b+7x−y)+5b4xy2− b4y3 +x2(−120−6b5−5b3y2

+b2y3)+2a3(b−y)(8b3 +b2(5x−y)+xy(−x+y)−b(13x2−2xy+y2))+a2(−120−6b5

+ x5 + x2y3 + b4(−25x+ 7y) + b3(25x2 + 20xy + 3y2) + b2(10x3 − 27x2y + 6xy2

− 5y3) + bx(−5x3 − 9xy2 + 4y3))− 2a(10b3x3 − 5b2x4 + bx5 + b3(b− 2y)y2

+ bx2y(−5b2 − 6by + y2 + x(−120− 6b5 + 5b4y + 5b3y2 + b2y3))).

Proof : As the same procedure of example(2.2.1)

Rx(y) =


∑5

i=0Pi(x)yi, y ≤ x,∑5
i=0Qi(x)yi, y > x.

(3.21)

and we have the following equations
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1) Rx(a) = 0 7) Rx(x+ 0) = Rx(x− 0)

2) R′x(a) = 0 8) R′x(x+ 0) = R′x(x− 0)

3) R′′′x (a) = 0 9) R′′x(x+ 0) = R′′x(x− 0)

4) Rx(b) +R(5)
x (b) = 0 10) R′′′x (x+ 0) = R′′′x (x− 0)

5) R′′′x (b) = 0 11) R(4)
x (x+ 0) = R(4)

x (x− 0)

6) R(4)
x (b) = 0 12) R(5)

x (x+ 0)−R(5)
x (x− 0) = 1

We find the unknown coefficients Pi, Qi, i = 0, 1, · · · , 5, by using Mathematica

11.0, then substituting coefficients in(3.21), hence (3.20) is obtained.

To solve equation (3.15) we define a differentail operator L : W 3
2 [a, b]→ W 1

2 [a, b],

Lu(x) = Dα
∗a. After homogenizing the initial condition of equation (3.15), then it

can be transformed into the equivalent form:


Lu(x) = f(x, u(x), u′(x)),

u(a) = u′(a) = 0.

(3.22)

where x ∈ [a, b], u(x) ∈ W 3
2 [a, b] and f(x, u(x), u′(x)) ∈ W 1

2 [a, b].

Now, applying the operator I α
a of both sides we have

u(x)−
1∑

k=0

uk(a)

k!
(x− a)k =

1

Γ(α)

∫ x

a

(x− t)α−1f(x, u(t), u′(t))dt, (3.23)

since u(i)(a) = 0, i = 0, 1, then we get

u(x) = F(x, u(x), u′(x)), (3.24)

where F(x, u(x), u′(x)) =
1

Γ(α)

∫ x
a

(x− t)α−1f(x, u(t), u′(t))dt.

So define a differential operator L : W 3
2 [a, b] → W 1

2 [a, b], Lu(x) = u(x), the FDE
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(3.15) can be converted into the equivalent form as follow:


Lu(x) = f(x, u(x), u′(x)),

u(a) = u′(a) = 0,

(3.25)

where x ∈ [a, b], u(x) ∈ W 3
2 [a, b], and F(x, u(x), u′(x)) ∈ W 1

2 [a, b].

3.2.2 BVP Second Order FDEs

Consider the BVP second order FDE of the following form:

Dα
∗au(x) = f(x, u(x), u′(x)), a ≤ x ≤ b, 1 < α ≤ 2, (3.26)

u(a) = u0, u(b) = u1 (3.27)

where a, b, u0 and u1 are real constants, Dα
∗a denotes the Caputo fractional deriva-

tive of order α, f(x, u(x), u′(x)) is a linear or nonlinear function depending on the

problem discussed, and u(x) is unknown function to be determined.

We construct a reproducing kernel space

W 3
2 [a, b] = {u : u, u′, u′′ are Abs. C, u, u′, u′′, u′′′ ∈ L2[a, b], u(a) = u(b) = 0},

in which every function satisfies u(a) = 0, u(b) = 0. The inner product and the

norm are given, respectively by

〈u, v〉W 3
2

= u(a)v(a) + u′(a)v′(a) + u(b)v(b) +

∫ b

a

u′′′(t)v′′′(t)dt, (3.28)

and the norm ‖u‖W 3
2

=
√
〈u, u〉W 3

2
where u, v ∈ W 3

2 [a, b].

Theorem 3.2.3. The space W 3
2 [a, b] is a reproducing kernel space. That is, for



48

every fixed x ∈ [a, b] and all u(x) ∈ W 3
2 [a, b], there exist Sx(y) ∈ W 3

2 [a, b], y ∈ [a, b]

such that 〈u(y),Sx(y)〉W 3
2

= u(x), and the reproducing kernel Sx(y) can be presented

by

Sx(y) =


h(x, y), y ≤ x,

h(y, x), y > x.

(3.29)

where h(x, y) =
1

120(a− b)2
(a − y)(−4a4(b − x)(b − y) − 6b3x2y + a3(b − x)(b −

y)(6b + 7x + 3y) + x2y(−120 + x3 + y3) − 3a2(b − y)(xy(−3x + y) + 2b2(2x + y) −

b(4x2−xy+y2))−5bx(−24y+x3y+x(−24+y3))+ b2(10x3y−y4 +5x(−24+y3))+

a(6b3x(x+ 2y)− b2(−120 + 10x3 + 12x2y + 15xy2 + y3) + x(−x4 + xy3 − 2y(−60 +

y3)) + b(−120x+ 5x4 + 15x2y2 + 2y(−60 + y3)))).

Proof : As the same procedure of Example(2.2.1), we have

Sx(y) =


∑5

i=0Pi(x)yi, y ≤ x,∑5
i=0Qi(x)yi, y > x.

(3.30)

and we have the following equations

1) Sx(a) = 0 7) Sx(x+ 0) = Sx(x− 0)

2) Sx(b) = 0 8) S ′x(x+ 0) = S ′x(x− 0)

3) S ′x(a) + S(4)
x (a) = 0 9) S ′′x(x+ 0) = S ′′x(x− 0)

4) S ′′′x (a) = 0 10) S ′′′x (x+ 0) = S ′′′x (x− 0)

5) S(3)
x (b) = 0 11) S(4)

x (x+ 0) = S(4)
x (x− 0)

6) S4
x(b) = 0 12) S(5)

x (x+ 0)− S(5)
x (x− 0) = 1

We find the unknown coefficients Pi, Qi, i = 0, 1, · · · , 5, by using Mathematica

11.0, then substituting coefficients in (3.30), hence (3.29) is obtained.
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The space W 1
2 [a, b] is also a complete reproducing kernel space and we use the

reproducing kernel in Exempel(2.2.3)

Tx(y) =
1

2 sinh(b− a)
[cosh(x+ y − b− a) + cosh(|x− y| − b+ a)].

From the definition of the reproducing kernel space W 1
2 [a, b] and W 3

2 [a, b], we get

W 1
2 [a, b] ⊃ W 3

2 [a, b], for any u ∈ W 3
2 [a, b], and ‖u‖W 1

2 [a,b] ≤ ‖u‖W 3
2 [a,b].

To solve equation (3.26) we define a differential operator L : W 3
2 [a, b] → W 1

2 [a, b],

such that Lu(x) = Dα
∗au(x). After homogenization of the bondary conditions of

equation (3.26), it can be converted into the equivalent from as follow:

Lu(x) = f(x, u(x), u′(x)), a ≤ x ≤ b, (3.31)

u(a) = u(b) = 0. (3.32)

where u(x) ∈ W 3
2 [a, b] and f(x, u, u′) ∈ W 1

2 .

3.3 Numerical Examples

In this section, five numerical examples are given to demonstrate the accuracy of

this method. The computations are performed by Mathematica 11.0. We compare

the results by this method with the exact solution of each example.

Example 3.3.1. Consider the following linear FDE:
D0.5
∗0 =

√
π x, 0 ≤ x ≤ 1,

u(0) = 0,

with the exact solution u(x) = x1.5.
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By using the RKHS method, taking n = 30, xi = i
n
, i = 1, · · · , n, with the reproduc-

ing kernel kx(y) on [0, 1], the numerical results are given in Table (3.1) and Figure

(3.1).

Table 3.1: Numerical results for u(x) of Example 3.3.1.

x Exact Solution Approximate solution Absolute Error
0. 0 0 0
0.1 0.03162278 0.03162278 1.90125693× 10−15

0.2 0.08944272 0.16431677 3.80251386× 10−15

0.3 0.16431677 0.16431677 3.80251386× 10−15

0.4 0.25298221 0.25298221 1.54321000× 10−14

0.5 0.35355339 0.35355339 6.23945340× 10−14

0.6 0.46475800 0.46475800 1.05249143× 10−13

0.7 0.58566202 0.58566202 2.11164419× 10−13

0.8 0.71554175 0.71554175 2.36366482× 10−13

0.9 0.85381497 0.85381497 3.41948692× 10−13

1. 1 1 2.36477504× 10−13

Figure 3.1: Exact and approximate solution u(x)

Example 3.3.2. Consider the fractional Riccati equation:
Dα
∗0u(x) = 1 + x2 − u2(x), 0 ≤ x ≤ 1, 0 ≤ α ≤ 1,

u(0) = 1,

The exact solution, when α = 1, is u(x) = x+ e−x2

1+
∫ x
0 e−t2dt

. Using the RKHS method,

taking n = 25, xi = i
n
, i = 1, · · · , n with the reproducing kernel Rx(y) on [0, 1], the
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numerical results are given in Table (3.2) and Figure (3.2).

Table 3.2: Numerical results for u(x) of Example 3.3.2.

x Exact Solution Approximate solution α = 0.9 α = 0.8 α = 0.7 Absolute Error α = 1
0. 1 1 1 1 1 0
0.1 1.00031731 1.00037230 1.00145635 1.00251261 1.00358873 5.49913502× 10−5

0.2 1.00241983 1.00251362 1.00501586 1.00742158 1.00982945 9.37945689× 10−5

0.3 1.00779459 1.00793879 1.01206811 1.01595610 1.01977952 1.44202866× 10−4

0.4 1.01765088 1.01785241 1.02372103 1.02911568 1.03433001 2.01534032× 10−4

0.5 1.03295758 1.03321888 1.04064780 1.04740649 1.05389405 2.61308818× 10−4

0.6 1.0544669 1.05478664 1.06364147 1.07171437 1.07944657 3.19833581× 10−4

0.7 1.08272748 1.08310095 1.09302288 1.10223924 1.11112432 3.73469815× 10−4

0.8 1.11809254 1.11851185 1.12932240 1.13988924 1.15023992 4.19300556× 10−4

0.9 1.16072397 1.16117856 1.17264233 1.18458423 1.19651741 4.54589936× 10−4

1 1.21059901 1.21107650 1.20522568 1.20188362 1.20053356 4.77488710× 10−4

Figure 3.2: (a) Exact and approximate solution u(x), (b) Approximate solution of u(x)
for different values of α.

Example 3.3.3. Consider the following linear FDE:
Dα
∗1u(x) = 1− u(x), 1 ≤ x ≤ 3, 1 ≤ α ≤ 2,

u(1) = u′(1) = 0.

The exact solution, when α = 2 is u(x) = 1− cos(1− x). Using the RKHS method,

taking n = 100, xi = 1+ 2i
n

, with the reproducing kernel kx(y) on [1, 3], the numerical

results are given in Table (3.3) and Figure (3.3).
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Table 3.3: Numerical results for u(x) of Example 3.3.3.

x Exact Solution Approximate solution α = 1.9 α = 1.8 α = 1.7 Absolute Error α = 1
1. 0 0 0 0 0 0
1.2 0.01993342 0.01989579 0.02545006 0.03349014 0.04526083 3.76281416× 10−5

1.4 0.07893900 0.07886271 0.09535639 0.12028719 0.15793205 7.62923692× 10−5

1.6 0.17466439 0.17455123 0.20343728 0.24988894 0.32266385 1.13155137× 10−4

1.8 0.30329329 0.30314666 0.34355708 0.41387356 0.52846831 1.46629448× 10−4

2 0.45969769 0.45952248 0.50904424 0.60406706 0.76537680 1.75218634× 10−4

2.2 0.63764225 0.63744466 0.6928211 0.81249286 1.02414375 1.97582491× 10−4

2.4 0.83003286 0.82982026 0.88767058 1.03156375 1.29632951 2.12598697× 10−4

2.6 1.02919952 1.02898011 1.08653013 1.25430708 1.57444112 2.19416757× 10−4

2.8 1.22720209 1.22698459 1.28277018 1.47455971 1.85204723 2.17501945× 10−4

3 1.41614684 1.41594017 1.50530711 1.75535906 2.23539176 2.06667109× 10−4

Figure 3.3: (a) Exact and approximate solution u(x), (b) Approximate solution of u(x)
for different values of α.

Example 3.3.4. Consider the following nonlinear FDE:
D1.4
∗0 u(x) = xu2(x) + 25

4
Γ(0.6)x1.6 − x7, 0 ≤ x ≤ 1,

u(0) = u′(0) = 0,

The exact solution is u(x) = x3. Using the RKHS method, taking n = 15, xi = i
n

,

with the reproducing kernel kx(y) on [0, 1], the numerical results are given in Table

(3.4) and Figure (3.4).
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Table 3.4: Numerical results for u(x) of Example 3.3.4.

x Exact Solution Approximate solution Absolute Error
0. 0 0 0
0.1 0.00100000 0.00099504 4.96443711× 10−6

0.2 0.00200000 0.00799990 9.50830642× 10−9

0.3 0.27000000 0.02700035 3.52173496× 10−7

0.4 0.06400000 0.06399977 2.25374170× 10−7

0.5 0.12500000 0.12499930 6.99193108× 10−7

0.6 0.21600000 0.21599879 1.21083166× 10−6

0.7 0.34300000 0.34299894 1.05900564× 10−6

0.8 0.51200000 0.51199597 4.02729866× 10−6

0.9 0.72900000 0.72897741 2.25866151× 10−5

1 1.00000000 0.99998936 1.06446764× 10−5

Figure 3.4: (a) Exact and approximate solution u(x), (b) Absolute error for Example
3.3.4

Example 3.3.5. Consider the following linear boundary FDE:
Dα
∗0u(x) = 1− u(x), 0 ≤ x ≤ 1, 1 ≤ α ≤ 2,

u(0) = u(1) = 0.

The exact solution, when α = 2 is u(x) = 1 − cos(x) − sin(x) tan(1
2
). Using the

RKHS method, taking n = 50, xi = i
n

, with the reproducing kernel Sx(y) on [0, 1],

the numerical results are given in Table (3.5) and Figure (3.5).
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Table 3.5: Numerical results for u(x) of Example 3.3.5.

x Exact Solution Approximate solution α = 1.9 α = 1.8 α = 1.7 Absolute Error α = 1
1. 0 0 0 0 0 0
0.1 -0.04954341 -0.04945350 -0.05382040 -0.06032754 -0.06965920 8.99036116× 10−5

0.2 -0.08860012 -0.08846678 -0.09485964 -0.10496952 -0.11990704 1.33352215× 10−4

0.3 -0.116779914 -0.11664899 -0.12357628 -0.13540199 -0.15348222 1.30919176× 10−4

0.4 -0.13380120 -0.13370082 -0.14018375 -0.15237329 -0.17171690 1.00381918× 10−4

0.5 -0.13949393 -0.13943117 -0.14491005 -0.15651318 -0.17565023 6.27545731× 10−5

0.6 -0.13380120 -0.13376886 -0.13805021 -0.14844555 -0.16622644 3.23473623× 10−5

0.7 -0.11677991 -0.11676583 -0.11997783 -0.12881853 -0.14435333 1.40826410× 10−5

0.8 -0.08860012 -0.08859438 -0.09114448 -0.09831196 -0.11092174 5.74811049× 10−6

0.9 -0.0495434 -0.04954106 -0.05207626 -0.05763784 -0.06680999 2.34876695× 10−6

1 0 0 0 0 0 0

Figure 3.5: (a) Exact and approximate solution u(x), (b) Approximate solution of u(x)
for different values of α
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Conclusion and Future

Recommendations

In this thesis, we apply the R.K.H.S.M to obtain the approximate solution of the

fractional differential equations of first and second order.

The numerical results are given to compare this approach with the exact solution

for different values of the order derivative α in the Caputo sense.

The results of examples which are shown in tables end figures, proved the effeciency

and the accuracy of the method. The analytical and the approximate solutions are

presented in the form of series in the space W m
2 [a, b]. Additionally, the approximate

solution and its derivatives are uniformly convergent to the exact solution and its

derivatives respectiveley. By given a new form of the reproducing kernel function and

different R.K.H.S to deal with the initial and boundary condition, the our method

can be used to deal with other types of F.D.E’s with non- classical conditions.

In the future, we try to use the R.K.H.S.M for:

• solving the mixed differential equations with integer and fractional orders.

• solving a system of F.D.E’s of first and second order.

• solving the F.D.E’s with higher order.
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Abstract

In this thesis, based on the reproducing kernel Hilbert space method (RKHSM)

an efficient algorithm is presented for solving ordinary differential equations of frac-

tional order. We applied RKHSM to obtain approximate solution for a general form

of first and second order fractional differential equations. The analytical and ap-

proximate solutions are represented in the form of series in the reproducing kernel

space W m
2 [a, b]. The n−term approximation and all its derivatives are obtained and

proved to converge uniformly to the analytical solution and all its derivatives, re-

spectively. The proposed method has an advantage that it is possible to pick any

point in the interval of integration. Numerical examples are given to demonstrate

the computation efficiency of the presented method. The results of applying this

method to the studied cases show the high accuracy, simplicity and efficiency of the

approach.



 ملخص

 

الرسالة هذه  ي 
ت    ،ف  هلبر فضاء  نواة  استنساخ  طريقة  بدراسة  علىنقوم    وتطبيقها 

على   والثانية للحصول  ، ت التفاضلية العادية ذات الرتبة الكسرية من الدرجة الأولىالمعادل 

 . حلول تقريبية لهذه المعادلت

ي علىيمثل الحل التحليلىي   ن  أ كما نوضح  .  سو بوليفشكل سلسلة من فضاء    والتقريبر

الصحيح الحل  من  منتظم  بشكل  يتقارب  ي  التقريبر من    . الحل  مجموعة  بدراسة  قمنا  كما 

ي عرضت الفعالية 
 . استنساخ النواة والكفاءة لطريقةالأمثلة الب 
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Le Résumé

Cette thése présente une approche basée sur la méthode de (RKHSM) pour

résoudre efficacement des équations différentielles ordinaires d’ordre fractionnaire.

Cette approche consistait á utiliser la méthode RKHSM afin d’obtenir une solution

approximative aux équations différentielles fractionnaires du premier et du second

ordre, dans une forme générale. Les solution analytiques et approximatives sont

représentées sous forme de séries dans l’espace de noyau reproducteur W m
2 [a, b].

L’approximation en n termes et ses dérivées sont obtenues et prouvées converger

uniformément vers la solution analytique et toutes ses dérivées respectivement.

L’avantage de la méthode proposée est la flexibilité de choisir n’importe quel point

dans l’intervalle d’intégration. Des exemples numériques sont fournis pour démontrer

l’efficacité de calcul de la méthode présentée. Les résultats obtenus montrent une

grande précision, simplicité et efficacité de cette approche dans les cas étudiés.
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